Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ENH: Implement cum* methods for PyArrow strings #60633

Merged
16 changes: 16 additions & 0 deletions pandas/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -1317,6 +1317,22 @@ def nullable_string_dtype(request):
return request.param


@pytest.fixture(
params=[
pytest.param("str[pyarrow]", marks=td.skip_if_no("pyarrow")),
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I was going to comment: I don't think this can work. Although it is then strange the tests are passing :) But it seems this was not doing what I think you expected it was doing -> #60661

I would use the same approach of creating the dtype through StringDtype(..) like in some of the fixtures above

pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")),
]
)
def pyarrow_string_dtype(request):
"""
Parametrized fixture for string dtypes backed by Pyarrow.

* 'str[pyarrow]'
* 'string[pyarrow]'
"""
return request.param


@pytest.fixture(
params=[
"python",
Expand Down
62 changes: 62 additions & 0 deletions pandas/core/arrays/arrow/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@
is_list_like,
is_numeric_dtype,
is_scalar,
is_string_dtype,
pandas_dtype,
)
from pandas.core.dtypes.dtypes import DatetimeTZDtype
Expand Down Expand Up @@ -1619,6 +1620,9 @@ def _accumulate(
------
NotImplementedError : subclass does not define accumulations
"""
if is_string_dtype(self):
return self._str_accumulate(name=name, skipna=skipna, **kwargs)

pyarrow_name = {
"cummax": "cumulative_max",
"cummin": "cumulative_min",
Expand Down Expand Up @@ -1654,6 +1658,64 @@ def _accumulate(

return type(self)(result)

def _str_accumulate(
self, name: str, *, skipna: bool = True, **kwargs
) -> ArrowExtensionArray | ExtensionArray:
"""
Accumulate implementation for strings, see `_accumulate` docstring for details.

pyarrow.compute does not implement these methods for strings.
"""
if name == "cumprod":
msg = f"operation '{name}' not supported for dtype '{self.dtype}'"
raise TypeError(msg)

# We may need to strip out leading / trailing NA values
head: pa.array | None = None
tail: pa.array | None = None
pa_array = self._pa_array
np_func = {
"cumsum": np.cumsum,
"cummin": np.minimum.accumulate,
"cummax": np.maximum.accumulate,
}[name]

if self._hasna:
if skipna:
if name == "cumsum":
pa_array = pc.fill_null(pa_array, "")
else:
# After the first non-NA value we can retain the running min/max
# by forward filling.
pa_array = pc.fill_null_forward(pa_array)
# But any leading NA values should result in "".
nulls = pc.is_null(pa_array)
idx = pc.index(nulls, False).as_py()
if idx == -1:
idx = len(pa_array)
if idx > 0:
head = pa.array([""] * idx, type=pa_array.type)
pa_array = pa_array[idx:].combine_chunks()
else:
# When not skipping NA values, the result should be null from
# the first NA value onward.
nulls = pc.is_null(pa_array)
idx = pc.index(nulls, True).as_py()
tail = pa.nulls(len(pa_array) - idx, type=pa_array.type)
pa_array = pa_array[:idx].combine_chunks()
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is the combine chunks needed here? (I would expect that the conversion to numpy (when calling the numpy func) will do this automatically (and potentially more efficiently))


# error: Cannot call function of unknown type
pa_result = pa.array(np_func(pa_array), type=pa_array.type) # type: ignore[operator]

assert head is None or tail is None
if head is not None:
pa_result = pa.concat_arrays([head, pa_result])
elif tail is not None:
pa_result = pa.concat_arrays([pa_result, tail])

result = type(self)(pa_result)
return result

def _reduce_pyarrow(self, name: str, *, skipna: bool = True, **kwargs) -> pa.Scalar:
"""
Return a pyarrow scalar result of performing the reduction operation.
Expand Down
9 changes: 6 additions & 3 deletions pandas/tests/apply/test_str.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,10 @@
import numpy as np
import pytest

from pandas.compat import WASM
from pandas.compat import (
HAS_PYARROW,
WASM,
)

from pandas.core.dtypes.common import is_number

Expand Down Expand Up @@ -163,10 +166,10 @@ def test_agg_cython_table_transform_series(request, series, func, expected):
# GH21224
# test transforming functions in
# pandas.core.base.SelectionMixin._cython_table (cumprod, cumsum)
if series.dtype == "string" and func == "cumsum":
if series.dtype == "string" and func == "cumsum" and not HAS_PYARROW:
rhshadrach marked this conversation as resolved.
Show resolved Hide resolved
request.applymarker(
pytest.mark.xfail(
raises=(TypeError, NotImplementedError),
raises=NotImplementedError,
reason="TODO(infer_string) cumsum not yet implemented for string",
)
)
Expand Down
5 changes: 3 additions & 2 deletions pandas/tests/extension/base/accumulate.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,9 @@ def _supports_accumulation(self, ser: pd.Series, op_name: str) -> bool:
def check_accumulate(self, ser: pd.Series, op_name: str, skipna: bool):
try:
alt = ser.astype("float64")
except TypeError:
# e.g. Period can't be cast to float64
except (TypeError, ValueError):
# e.g. Period can't be cast to float64 (TypeError)
# String can't be cast to float64 (ValueError)
alt = ser.astype(object)

result = getattr(ser, op_name)(skipna=skipna)
Expand Down
15 changes: 10 additions & 5 deletions pandas/tests/extension/test_arrow.py
Original file line number Diff line number Diff line change
Expand Up @@ -393,13 +393,12 @@ def _supports_accumulation(self, ser: pd.Series, op_name: str) -> bool:
# attribute "pyarrow_dtype"
pa_type = ser.dtype.pyarrow_dtype # type: ignore[union-attr]

if (
pa.types.is_string(pa_type)
or pa.types.is_binary(pa_type)
or pa.types.is_decimal(pa_type)
):
if pa.types.is_binary(pa_type) or pa.types.is_decimal(pa_type):
if op_name in ["cumsum", "cumprod", "cummax", "cummin"]:
return False
elif pa.types.is_string(pa_type):
if op_name == "cumprod":
return False
elif pa.types.is_boolean(pa_type):
if op_name in ["cumprod", "cummax", "cummin"]:
return False
Expand All @@ -414,6 +413,12 @@ def _supports_accumulation(self, ser: pd.Series, op_name: str) -> bool:
def test_accumulate_series(self, data, all_numeric_accumulations, skipna, request):
pa_type = data.dtype.pyarrow_dtype
op_name = all_numeric_accumulations

if pa.types.is_string(pa_type) and op_name in ["cumsum", "cummin", "cummax"]:
# https://github.com/pandas-dev/pandas/pull/60633
# Doesn't fit test structure, tested in series/test_cumulative.py instead.
return

ser = pd.Series(data)

if not self._supports_accumulation(ser, op_name):
Expand Down
10 changes: 10 additions & 0 deletions pandas/tests/extension/test_string.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,8 @@

from pandas.compat import HAS_PYARROW

from pandas.core.dtypes.base import StorageExtensionDtype

import pandas as pd
import pandas._testing as tm
from pandas.api.types import is_string_dtype
Expand Down Expand Up @@ -192,6 +194,14 @@ def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
and op_name in ("any", "all")
)

def _supports_accumulation(self, ser: pd.Series, op_name: str) -> bool:
assert isinstance(ser.dtype, StorageExtensionDtype)
return ser.dtype.storage == "pyarrow" and op_name in [
"cummin",
"cummax",
"cumsum",
]

def _cast_pointwise_result(self, op_name: str, obj, other, pointwise_result):
dtype = cast(StringDtype, tm.get_dtype(obj))
if op_name in ["__add__", "__radd__"]:
Expand Down
54 changes: 54 additions & 0 deletions pandas/tests/series/test_cumulative.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
tests.frame.test_cumulative
"""

import re

import numpy as np
import pytest

Expand Down Expand Up @@ -227,3 +229,55 @@ def test_cumprod_timedelta(self):
ser = pd.Series([pd.Timedelta(days=1), pd.Timedelta(days=3)])
with pytest.raises(TypeError, match="cumprod not supported for Timedelta"):
ser.cumprod()

@pytest.mark.parametrize(
"data, op, skipna, expected_data",
[
([], "cumsum", True, []),
([], "cumsum", False, []),
(["x", "z", "y"], "cumsum", True, ["x", "xz", "xzy"]),
(["x", "z", "y"], "cumsum", False, ["x", "xz", "xzy"]),
(["x", pd.NA, "y"], "cumsum", True, ["x", "x", "xy"]),
(["x", pd.NA, "y"], "cumsum", False, ["x", pd.NA, pd.NA]),
([pd.NA, "x", "y"], "cumsum", True, ["", "x", "xy"]),
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It seems that for numerical data, we actually (somewhat inconsistently?) propagate leading NAs:

In [7]: pd.Series([np.nan, 0.5, 2.5]).cumsum()
Out[7]: 
0    NaN
1    0.5
2    3.0
dtype: float64

(i.e. the result doesn't have 0.0 for the first element)

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actually not related to "leading" NAs. It seems what is happening is that missing values are ignored to calculate the cumulative result, but then are propagated to the result elementwise. This is also shown in the docstring example of cumsum, so this seems intentional.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for catching this. Agreed we should match this behavior. I do find it odd, but that's (possibly) for another day!

([pd.NA, "x", "y"], "cumsum", False, [pd.NA, pd.NA, pd.NA]),
([pd.NA, pd.NA, pd.NA], "cumsum", True, ["", "", ""]),
([pd.NA, pd.NA, pd.NA], "cumsum", False, [pd.NA, pd.NA, pd.NA]),
([], "cummin", True, []),
([], "cummin", False, []),
(["y", "z", "x"], "cummin", True, ["y", "y", "x"]),
(["y", "z", "x"], "cummin", False, ["y", "y", "x"]),
(["y", pd.NA, "x"], "cummin", True, ["y", "y", "x"]),
(["y", pd.NA, "x"], "cummin", False, ["y", pd.NA, pd.NA]),
([pd.NA, "y", "x"], "cummin", True, ["", "y", "x"]),
([pd.NA, "y", "x"], "cummin", False, [pd.NA, pd.NA, pd.NA]),
([pd.NA, pd.NA, pd.NA], "cummin", True, ["", "", ""]),
([pd.NA, pd.NA, pd.NA], "cummin", False, [pd.NA, pd.NA, pd.NA]),
([], "cummax", True, []),
([], "cummax", False, []),
(["x", "z", "y"], "cummax", True, ["x", "z", "z"]),
(["x", "z", "y"], "cummax", False, ["x", "z", "z"]),
(["x", pd.NA, "y"], "cummax", True, ["x", "x", "y"]),
(["x", pd.NA, "y"], "cummax", False, ["x", pd.NA, pd.NA]),
([pd.NA, "x", "y"], "cummax", True, ["", "x", "y"]),
([pd.NA, "x", "y"], "cummax", False, [pd.NA, pd.NA, pd.NA]),
([pd.NA, pd.NA, pd.NA], "cummax", True, ["", "", ""]),
([pd.NA, pd.NA, pd.NA], "cummax", False, [pd.NA, pd.NA, pd.NA]),
],
)
def test_cum_methods_pyarrow_strings(
self, pyarrow_string_dtype, data, op, skipna, expected_data
):
# https://github.com/pandas-dev/pandas/pull/60633
ser = pd.Series(data, dtype=pyarrow_string_dtype)
method = getattr(ser, op)
expected = pd.Series(expected_data, dtype=pyarrow_string_dtype)
result = method(skipna=skipna)
tm.assert_series_equal(result, expected)

def test_cumprod_pyarrow_strings(self, pyarrow_string_dtype, skipna):
# https://github.com/pandas-dev/pandas/pull/60633
ser = pd.Series(list("xyz"), dtype=pyarrow_string_dtype)
msg = re.escape(f"operation 'cumprod' not supported for dtype '{ser.dtype}'")
with pytest.raises(TypeError, match=msg):
ser.cumprod(skipna=skipna)