Developer-friendly & type-safe Python SDK specifically catered to leverage orq-ai-sdk API.
orq.ai API: orq.ai API documentation
For more information about the API: orq.ai Documentation
Note
Python version upgrade policy
Once a Python version reaches its official end of life date, a 3-month grace period is provided for users to upgrade. Following this grace period, the minimum python version supported in the SDK will be updated.
The SDK can be installed with uv, pip, or poetry package managers.
uv is a fast Python package installer and resolver, designed as a drop-in replacement for pip and pip-tools. It's recommended for its speed and modern Python tooling capabilities.
uv add orq-ai-sdkPIP is the default package installer for Python, enabling easy installation and management of packages from PyPI via the command line.
pip install orq-ai-sdkPoetry is a modern tool that simplifies dependency management and package publishing by using a single pyproject.toml file to handle project metadata and dependencies.
poetry add orq-ai-sdkYou can use this SDK in a Python shell with uv and the uvx command that comes with it like so:
uvx --from orq-ai-sdk pythonIt's also possible to write a standalone Python script without needing to set up a whole project like so:
#!/usr/bin/env -S uv run --script
# /// script
# requires-python = ">=3.9"
# dependencies = [
# "orq-ai-sdk",
# ]
# ///
from orq_ai_sdk import Orq
sdk = Orq(
# SDK arguments
)
# Rest of script here...Once that is saved to a file, you can run it with uv run script.py where
script.py can be replaced with the actual file name.
Generally, the SDK will work well with most IDEs out of the box. However, when using PyCharm, you can enjoy much better integration with Pydantic by installing an additional plugin.
# Synchronous Example
from orq_ai_sdk import Orq
import os
with Orq(
api_key=os.getenv("ORQ_API_KEY", ""),
) as orq:
res = orq.contacts.create(request={
"external_id": "user_12345",
"display_name": "Jane Smith",
"email": "[email protected]",
"avatar_url": "https://example.com/avatars/jane-smith.jpg",
"tags": [
"premium",
"beta-user",
"enterprise",
],
"metadata": {
"department": "Engineering",
"role": "Senior Developer",
"subscription_tier": "premium",
"last_login": "2024-01-15T10:30:00Z",
},
})
# Handle response
print(res)The same SDK client can also be used to make asynchronous requests by importing asyncio.
# Asynchronous Example
import asyncio
from orq_ai_sdk import Orq
import os
async def main():
async with Orq(
api_key=os.getenv("ORQ_API_KEY", ""),
) as orq:
res = await orq.contacts.create_async(request={
"external_id": "user_12345",
"display_name": "Jane Smith",
"email": "[email protected]",
"avatar_url": "https://example.com/avatars/jane-smith.jpg",
"tags": [
"premium",
"beta-user",
"enterprise",
],
"metadata": {
"department": "Engineering",
"role": "Senior Developer",
"subscription_tier": "premium",
"last_login": "2024-01-15T10:30:00Z",
},
})
# Handle response
print(res)
asyncio.run(main())This SDK supports the following security scheme globally:
| Name | Type | Scheme | Environment Variable |
|---|---|---|---|
api_key |
http | HTTP Bearer | ORQ_API_KEY |
To authenticate with the API the api_key parameter must be set when initializing the SDK client instance. For example:
from orq_ai_sdk import Orq
import os
with Orq(
api_key=os.getenv("ORQ_API_KEY", ""),
) as orq:
res = orq.contacts.create(request={
"external_id": "user_12345",
"display_name": "Jane Smith",
"email": "[email protected]",
"avatar_url": "https://example.com/avatars/jane-smith.jpg",
"tags": [
"premium",
"beta-user",
"enterprise",
],
"metadata": {
"department": "Engineering",
"role": "Senior Developer",
"subscription_tier": "premium",
"last_login": "2024-01-15T10:30:00Z",
},
})
# Handle response
print(res)Available methods
- create - Create agent
- delete - Delete agent
- retrieve - Retrieve agent
- update - Update agent
invoke- Execute an agent task⚠️ Deprecated- list - List agents
run- Run an agent with configuration⚠️ Deprecatedstream_run- Run agent with streaming response⚠️ Deprecatedstream- Stream agent execution in real-time⚠️ Deprecated
- create - Create response
- list - List budget configurations
- create - Create budget configuration
- get - Get budget configuration
- update - Update budget configuration
- delete - Delete budget configuration
- parse - Parse text
- create - Create a contact
- list - List contacts
- retrieve - Retrieve a contact
- update - Update a contact
- delete - Delete a contact
- list - List datasets
- create - Create a dataset
- retrieve - Retrieve a dataset
- update - Update a dataset
- delete - Delete a dataset
- list_datapoints - List datapoints
- create_datapoint - Create a datapoint
- retrieve_datapoint - Retrieve a datapoint
- update_datapoint - Update a datapoint
- delete_datapoint - Delete a datapoint
- clear - Delete all datapoints
- invoke - Invoke
- list - List all deployments
- get_config - Get config
- stream - Stream
- create - Add metrics
- all - Get all Evaluators
- create - Create an Evaluator
- update - Update an Evaluator
- delete - Delete an Evaluator
- invoke - Invoke a Custom Evaluator
- create - Submit feedback
- list - List all knowledge bases
- create - Create a knowledge
- retrieve - Retrieves a knowledge base
- update - Updates a knowledge
- delete - Deletes a knowledge
- search - Search knowledge base
- list_datasources - List all datasources
- create_datasource - Create a new datasource
- retrieve_datasource - Retrieve a datasource
- delete_datasource - Deletes a datasource
- update_datasource - Update a datasource
- create_chunks - Create chunks for a datasource
- list_chunks - List all chunks for a datasource
- delete_chunks - Delete multiple chunks
- list_chunks_paginated - List chunks with offset-based pagination
- get_chunks_count - Get chunks total count
- update_chunk - Update a chunk
- delete_chunk - Delete a chunk
- retrieve_chunk - Retrieve a chunk
- list - List memory stores
- create - Create memory store
- retrieve - Retrieve memory store
- update - Update memory store
- delete - Delete memory store
- list_memories - List all memories
- create_memory - Create a new memory
- retrieve_memory - Retrieve a specific memory
- update_memory - Update a specific memory
- delete_memory - Delete a specific memory
- list_documents - List all documents for a memory
- create_document - Create a new memory document
- retrieve_document - Retrieve a specific memory document
- update_document - Update a specific memory document
- delete_document - Delete a specific memory document
- list - List models
- list - List all prompts
- create - Create a prompt
- retrieve - Retrieve a prompt
- update - Update a prompt
- delete - Delete a prompt
- list_versions - List all prompt versions
- get_version - Retrieve a prompt version
- retrieve - Retrieve a remote config
Server-sent events are used to stream content from certain
operations. These operations will expose the stream as Generator that
can be consumed using a simple for loop. The loop will
terminate when the server no longer has any events to send and closes the
underlying connection.
The stream is also a Context Manager and can be used with the with statement and will close the
underlying connection when the context is exited.
from orq_ai_sdk import Orq
import os
with Orq(
environment="<value>",
contact_id="<id>",
api_key=os.getenv("ORQ_API_KEY", ""),
) as orq:
res = orq.deployments.stream(key="<key>")
with res as event_stream:
for event in event_stream:
# handle event
print(event, flush=True)Certain SDK methods accept file objects as part of a request body or multi-part request. It is possible and typically recommended to upload files as a stream rather than reading the entire contents into memory. This avoids excessive memory consumption and potentially crashing with out-of-memory errors when working with very large files. The following example demonstrates how to attach a file stream to a request.
Tip
For endpoints that handle file uploads bytes arrays can also be used. However, using streams is recommended for large files.
from orq_ai_sdk import Orq
import os
with Orq(
api_key=os.getenv("ORQ_API_KEY", ""),
) as orq:
res = orq.files.create(file={
"file_name": "example.file",
"content": open("example.file", "rb"),
}, purpose="retrieval")
# Handle response
print(res)Some of the endpoints in this SDK support retries. If you use the SDK without any configuration, it will fall back to the default retry strategy provided by the API. However, the default retry strategy can be overridden on a per-operation basis, or across the entire SDK.
To change the default retry strategy for a single API call, simply provide a RetryConfig object to the call:
from orq_ai_sdk import Orq
from orq_ai_sdk.utils import BackoffStrategy, RetryConfig
import os
with Orq(
api_key=os.getenv("ORQ_API_KEY", ""),
) as orq:
res = orq.contacts.create(request={
"external_id": "user_12345",
"display_name": "Jane Smith",
"email": "[email protected]",
"avatar_url": "https://example.com/avatars/jane-smith.jpg",
"tags": [
"premium",
"beta-user",
"enterprise",
],
"metadata": {
"department": "Engineering",
"role": "Senior Developer",
"subscription_tier": "premium",
"last_login": "2024-01-15T10:30:00Z",
},
},
RetryConfig("backoff", BackoffStrategy(1, 50, 1.1, 100), False))
# Handle response
print(res)If you'd like to override the default retry strategy for all operations that support retries, you can use the retry_config optional parameter when initializing the SDK:
from orq_ai_sdk import Orq
from orq_ai_sdk.utils import BackoffStrategy, RetryConfig
import os
with Orq(
retry_config=RetryConfig("backoff", BackoffStrategy(1, 50, 1.1, 100), False),
api_key=os.getenv("ORQ_API_KEY", ""),
) as orq:
res = orq.contacts.create(request={
"external_id": "user_12345",
"display_name": "Jane Smith",
"email": "[email protected]",
"avatar_url": "https://example.com/avatars/jane-smith.jpg",
"tags": [
"premium",
"beta-user",
"enterprise",
],
"metadata": {
"department": "Engineering",
"role": "Senior Developer",
"subscription_tier": "premium",
"last_login": "2024-01-15T10:30:00Z",
},
})
# Handle response
print(res)OrqError is the base class for all HTTP error responses. It has the following properties:
| Property | Type | Description |
|---|---|---|
err.message |
str |
Error message |
err.status_code |
int |
HTTP response status code eg 404 |
err.headers |
httpx.Headers |
HTTP response headers |
err.body |
str |
HTTP body. Can be empty string if no body is returned. |
err.raw_response |
httpx.Response |
Raw HTTP response |
err.data |
Optional. Some errors may contain structured data. See Error Classes. |
from orq_ai_sdk import Orq, models
import os
with Orq(
api_key=os.getenv("ORQ_API_KEY", ""),
) as orq:
res = None
try:
res = orq.contacts.retrieve(id="<id>")
# Handle response
print(res)
except models.OrqError as e:
# The base class for HTTP error responses
print(e.message)
print(e.status_code)
print(e.body)
print(e.headers)
print(e.raw_response)
# Depending on the method different errors may be thrown
if isinstance(e, models.RetrieveContactContactsResponseBody):
print(e.data.error) # strPrimary error:
OrqError: The base class for HTTP error responses.
Less common errors (24)
Network errors:
httpx.RequestError: Base class for request errors.httpx.ConnectError: HTTP client was unable to make a request to a server.httpx.TimeoutException: HTTP request timed out.
Inherit from OrqError:
HonoAPIError: Applicable to 10 of 95 methods.*RetrieveContactContactsResponseBody: Contact not found. Status code404. Applicable to 1 of 95 methods.*UpdateContactContactsResponseBody: Contact not found. Status code404. Applicable to 1 of 95 methods.*DeleteContactResponseBody: Contact not found. Status code404. Applicable to 1 of 95 methods.*GetEvalsEvalsResponseBody: Workspace ID is not found on the request. Status code404. Applicable to 1 of 95 methods.*CreateEvalEvalsResponseBody: Workspace ID is not found on the request. Status code404. Applicable to 1 of 95 methods.*UpdateEvalEvalsResponseBody: Workspace ID is not found on the request. Status code404. Applicable to 1 of 95 methods.*DeleteEvalResponseBody: Workspace ID is not found on the request. Status code404. Applicable to 1 of 95 methods.*InvokeEvalEvalsResponseBody: Workspace ID is not found on the request. Status code404. Applicable to 1 of 95 methods.*DeleteAgentResponseBody: Agent not found. The specified agent key does not exist in the workspace or has already been deleted. Status code404. Applicable to 1 of 95 methods.*RetrieveAgentRequestAgentsResponseBody: Agent not found. The specified agent key does not exist in the workspace or you do not have permission to access it. Status code404. Applicable to 1 of 95 methods.*UpdateAgentAgentsResponseBody: Agent not found. The specified agent key does not exist in the workspace or you do not have permission to modify it. Status code404. Applicable to 1 of 95 methods.*StreamRunAgentAgentsResponseBody: Model not found. Status code404. Applicable to 1 of 95 methods.*StreamAgentAgentsResponseBody: Agent not found. Status code404. Applicable to 1 of 95 methods.*UpdatePromptResponseBody: Prompt not found. Status code404. Applicable to 1 of 95 methods.*GetPromptVersionPromptsResponseBody: Not Found - The prompt or prompt version does not exist. Status code404. Applicable to 1 of 95 methods.*UpdateToolToolsResponseBody: Tool not found. Status code404. Applicable to 1 of 95 methods.*CreateAgentRequestAgentsResponseBody: Conflict - An agent with the specified key already exists in this workspace. Each agent must have a unique key within a workspace to ensure proper identification and management. Status code409. Applicable to 1 of 95 methods.*InvokeEvalEvalsResponseResponseBody: Error running the evaluator. Status code500. Applicable to 1 of 95 methods.*ResponseValidationError: Type mismatch between the response data and the expected Pydantic model. Provides access to the Pydantic validation error via thecauseattribute.
* Check the method documentation to see if the error is applicable.
The default server can be overridden globally by passing a URL to the server_url: str optional parameter when initializing the SDK client instance. For example:
from orq_ai_sdk import Orq
import os
with Orq(
server_url="https://my.orq.ai",
api_key=os.getenv("ORQ_API_KEY", ""),
) as orq:
res = orq.contacts.create(request={
"external_id": "user_12345",
"display_name": "Jane Smith",
"email": "[email protected]",
"avatar_url": "https://example.com/avatars/jane-smith.jpg",
"tags": [
"premium",
"beta-user",
"enterprise",
],
"metadata": {
"department": "Engineering",
"role": "Senior Developer",
"subscription_tier": "premium",
"last_login": "2024-01-15T10:30:00Z",
},
})
# Handle response
print(res)The Python SDK makes API calls using the httpx HTTP library. In order to provide a convenient way to configure timeouts, cookies, proxies, custom headers, and other low-level configuration, you can initialize the SDK client with your own HTTP client instance.
Depending on whether you are using the sync or async version of the SDK, you can pass an instance of HttpClient or AsyncHttpClient respectively, which are Protocol's ensuring that the client has the necessary methods to make API calls.
This allows you to wrap the client with your own custom logic, such as adding custom headers, logging, or error handling, or you can just pass an instance of httpx.Client or httpx.AsyncClient directly.
For example, you could specify a header for every request that this sdk makes as follows:
from orq_ai_sdk import Orq
import httpx
http_client = httpx.Client(headers={"x-custom-header": "someValue"})
s = Orq(client=http_client)or you could wrap the client with your own custom logic:
from orq_ai_sdk import Orq
from orq_ai_sdk.httpclient import AsyncHttpClient
import httpx
class CustomClient(AsyncHttpClient):
client: AsyncHttpClient
def __init__(self, client: AsyncHttpClient):
self.client = client
async def send(
self,
request: httpx.Request,
*,
stream: bool = False,
auth: Union[
httpx._types.AuthTypes, httpx._client.UseClientDefault, None
] = httpx.USE_CLIENT_DEFAULT,
follow_redirects: Union[
bool, httpx._client.UseClientDefault
] = httpx.USE_CLIENT_DEFAULT,
) -> httpx.Response:
request.headers["Client-Level-Header"] = "added by client"
return await self.client.send(
request, stream=stream, auth=auth, follow_redirects=follow_redirects
)
def build_request(
self,
method: str,
url: httpx._types.URLTypes,
*,
content: Optional[httpx._types.RequestContent] = None,
data: Optional[httpx._types.RequestData] = None,
files: Optional[httpx._types.RequestFiles] = None,
json: Optional[Any] = None,
params: Optional[httpx._types.QueryParamTypes] = None,
headers: Optional[httpx._types.HeaderTypes] = None,
cookies: Optional[httpx._types.CookieTypes] = None,
timeout: Union[
httpx._types.TimeoutTypes, httpx._client.UseClientDefault
] = httpx.USE_CLIENT_DEFAULT,
extensions: Optional[httpx._types.RequestExtensions] = None,
) -> httpx.Request:
return self.client.build_request(
method,
url,
content=content,
data=data,
files=files,
json=json,
params=params,
headers=headers,
cookies=cookies,
timeout=timeout,
extensions=extensions,
)
s = Orq(async_client=CustomClient(httpx.AsyncClient()))The Orq class implements the context manager protocol and registers a finalizer function to close the underlying sync and async HTTPX clients it uses under the hood. This will close HTTP connections, release memory and free up other resources held by the SDK. In short-lived Python programs and notebooks that make a few SDK method calls, resource management may not be a concern. However, in longer-lived programs, it is beneficial to create a single SDK instance via a context manager and reuse it across the application.
from orq_ai_sdk import Orq
import os
def main():
with Orq(
api_key=os.getenv("ORQ_API_KEY", ""),
) as orq:
# Rest of application here...
# Or when using async:
async def amain():
async with Orq(
api_key=os.getenv("ORQ_API_KEY", ""),
) as orq:
# Rest of application here...You can setup your SDK to emit debug logs for SDK requests and responses.
You can pass your own logger class directly into your SDK.
from orq_ai_sdk import Orq
import logging
logging.basicConfig(level=logging.DEBUG)
s = Orq(debug_logger=logging.getLogger("orq_ai_sdk"))You can also enable a default debug logger by setting an environment variable ORQ_DEBUG to true.
This SDK is in beta, and there may be breaking changes between versions without a major version update. Therefore, we recommend pinning usage to a specific package version. This way, you can install the same version each time without breaking changes unless you are intentionally looking for the latest version.
While we value open-source contributions to this SDK, this library is generated programmatically. Any manual changes added to internal files will be overwritten on the next generation. We look forward to hearing your feedback. Feel free to open a PR or an issue with a proof of concept and we'll do our best to include it in a future release.