-
Notifications
You must be signed in to change notification settings - Fork 235
C++ Demo - Facial Expression Recognition #233
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
cmake_minimum_required(VERSION 3.24) | ||
set(CMAKE_CXX_STANDARD 11) | ||
set(project_name "opencv_zoo_face_expression_recognition") | ||
|
||
PROJECT (${project_name}) | ||
|
||
set(OPENCV_VERSION "4.9.0") | ||
set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation") | ||
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH}) | ||
# Find OpenCV, you may need to set OpenCV_DIR variable | ||
# to the absolute path to the directory containing OpenCVConfig.cmake file | ||
# via the command line or GUI | ||
|
||
file(GLOB SourceFile | ||
"demo.cpp") | ||
# If the package has been found, several variables will | ||
# be set, you can find the full list with descriptions | ||
# in the OpenCVConfig.cmake file. | ||
# Print some message showing some of them | ||
message(STATUS "OpenCV library status:") | ||
message(STATUS " config: ${OpenCV_DIR}") | ||
message(STATUS " version: ${OpenCV_VERSION}") | ||
message(STATUS " libraries: ${OpenCV_LIBS}") | ||
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}") | ||
|
||
# Declare the executable target built from your sources | ||
add_executable(${project_name} ${SourceFile}) | ||
|
||
# Link your application with OpenCV libraries | ||
target_link_libraries(${project_name} PRIVATE ${OpenCV_LIBS}) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,304 @@ | ||
#include "opencv2/opencv.hpp" | ||
|
||
#include <map> | ||
#include <vector> | ||
#include <string> | ||
#include <iostream> | ||
|
||
using namespace std; | ||
using namespace cv; | ||
using namespace dnn; | ||
|
||
std::vector<std::pair<int, int>> backend_target_pairs = { | ||
{DNN_BACKEND_OPENCV, DNN_TARGET_CPU}, | ||
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA}, | ||
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16}, | ||
{DNN_BACKEND_TIMVX, DNN_TARGET_NPU}, | ||
{DNN_BACKEND_CANN, DNN_TARGET_NPU} | ||
}; | ||
|
||
class FER | ||
{ | ||
private: | ||
Net model; | ||
string modelPath; | ||
float std[5][2] = { | ||
{38.2946, 51.6963}, | ||
{73.5318, 51.5014}, | ||
{56.0252, 71.7366}, | ||
{41.5493, 92.3655}, | ||
{70.7299, 92.2041} | ||
}; | ||
vector<String> expressionEnum = { | ||
"angry", "disgust", "fearful", | ||
"happy", "neutral", "sad", "surprised" | ||
}; | ||
Mat stdPoints = Mat(5, 2, CV_32F, this->std); | ||
Size patchSize = Size(112,112); | ||
Scalar imageMean = Scalar(0.5,0.5,0.5); | ||
Scalar imageStd = Scalar(0.5,0.5,0.5); | ||
|
||
const String inputNames = "data"; | ||
const String outputNames = "label"; | ||
|
||
int backend_id; | ||
int target_id; | ||
|
||
public: | ||
FER(const string& modelPath, | ||
int backend_id = 0, | ||
int target_id = 0) | ||
: modelPath(modelPath), backend_id(backend_id), target_id(target_id) | ||
{ | ||
this->model = readNet(modelPath); | ||
this->model.setPreferableBackend(backend_id); | ||
this->model.setPreferableTarget(target_id); | ||
} | ||
|
||
Mat preprocess(const Mat image, const Mat points) | ||
{ | ||
// image alignment | ||
Mat transformation = estimateAffine2D(points, this->stdPoints); | ||
Mat aligned = Mat::zeros(this->patchSize.height, this->patchSize.width, image.type()); | ||
warpAffine(image, aligned, transformation, this->patchSize); | ||
|
||
// image normalization | ||
aligned.convertTo(aligned, CV_32F, 1.0 / 255.0); | ||
aligned -= imageMean; | ||
aligned /= imageStd; | ||
|
||
return blobFromImage(aligned);; | ||
} | ||
|
||
String infer(const Mat image, const Mat facePoints) | ||
{ | ||
Mat points = facePoints(Rect(4, 0, facePoints.cols-5, facePoints.rows)).reshape(2, 5); | ||
Mat inputBlob = preprocess(image, points); | ||
|
||
this->model.setInput(inputBlob, this->inputNames); | ||
Mat outputBlob = this->model.forward(this->outputNames); | ||
|
||
Point maxLoc; | ||
minMaxLoc(outputBlob, nullptr, nullptr, nullptr, &maxLoc); | ||
|
||
return getDesc(maxLoc.x); | ||
} | ||
|
||
String getDesc(int ind) | ||
{ | ||
|
||
if (ind >= 0 && ind < this->expressionEnum.size()) | ||
{ | ||
return this->expressionEnum[ind]; | ||
} | ||
else | ||
{ | ||
cerr << "Error: Index out of bounds." << endl; | ||
return ""; | ||
} | ||
} | ||
|
||
}; | ||
|
||
class YuNet | ||
{ | ||
public: | ||
YuNet(const string& model_path, | ||
const Size& input_size = Size(320, 320), | ||
float conf_threshold = 0.6f, | ||
float nms_threshold = 0.3f, | ||
int top_k = 5000, | ||
int backend_id = 0, | ||
int target_id = 0) | ||
: model_path_(model_path), input_size_(input_size), | ||
conf_threshold_(conf_threshold), nms_threshold_(nms_threshold), | ||
top_k_(top_k), backend_id_(backend_id), target_id_(target_id) | ||
{ | ||
model = FaceDetectorYN::create(model_path_, "", input_size_, conf_threshold_, nms_threshold_, top_k_, backend_id_, target_id_); | ||
} | ||
|
||
void setBackendAndTarget(int backend_id, int target_id) | ||
{ | ||
backend_id_ = backend_id; | ||
target_id_ = target_id; | ||
model = FaceDetectorYN::create(model_path_, "", input_size_, conf_threshold_, nms_threshold_, top_k_, backend_id_, target_id_); | ||
} | ||
|
||
/* Overwrite the input size when creating the model. Size format: [Width, Height]. | ||
*/ | ||
void setInputSize(const Size& input_size) | ||
{ | ||
input_size_ = input_size; | ||
model->setInputSize(input_size_); | ||
} | ||
|
||
Mat infer(const Mat image) | ||
{ | ||
Mat res; | ||
model->detect(image, res); | ||
return res; | ||
} | ||
|
||
private: | ||
Ptr<FaceDetectorYN> model; | ||
|
||
string model_path_; | ||
Size input_size_; | ||
float conf_threshold_; | ||
float nms_threshold_; | ||
int top_k_; | ||
int backend_id_; | ||
int target_id_; | ||
}; | ||
|
||
cv::Mat visualize(const cv::Mat& image, const cv::Mat& faces, const vector<String> expressions, float fps = -1.f) | ||
{ | ||
static cv::Scalar box_color{0, 255, 0}; | ||
static std::vector<cv::Scalar> landmark_color{ | ||
cv::Scalar(255, 0, 0), // right eye | ||
cv::Scalar( 0, 0, 255), // left eye | ||
cv::Scalar( 0, 255, 0), // nose tip | ||
cv::Scalar(255, 0, 255), // right mouth corner | ||
cv::Scalar( 0, 255, 255) // left mouth corner | ||
}; | ||
static cv::Scalar text_color{0, 255, 0}; | ||
|
||
auto output_image = image.clone(); | ||
|
||
if (fps >= 0) | ||
{ | ||
cv::putText(output_image, cv::format("FPS: %.2f", fps), cv::Point(0, 15), cv::FONT_HERSHEY_SIMPLEX, 0.5, text_color, 2); | ||
} | ||
|
||
for (int i = 0; i < faces.rows; ++i) | ||
{ | ||
// Draw bounding boxes | ||
int x1 = static_cast<int>(faces.at<float>(i, 0)); | ||
int y1 = static_cast<int>(faces.at<float>(i, 1)); | ||
int w = static_cast<int>(faces.at<float>(i, 2)); | ||
int h = static_cast<int>(faces.at<float>(i, 3)); | ||
cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2); | ||
|
||
// Expression as text | ||
String exp = expressions[i]; | ||
cv::putText(output_image, exp, cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.5, text_color); | ||
|
||
// Draw landmarks | ||
for (int j = 0; j < landmark_color.size(); ++j) | ||
{ | ||
int x = static_cast<int>(faces.at<float>(i, 2*j+4)), y = static_cast<int>(faces.at<float>(i, 2*j+5)); | ||
cv::circle(output_image, cv::Point(x, y), 2, landmark_color[j], 2); | ||
} | ||
} | ||
return output_image; | ||
} | ||
|
||
string keys = | ||
"{ help h | | Print help message. }" | ||
"{ model m | facial_expression_recognition_mobilefacenet_2022july.onnx | Usage: Path to the model, defaults to facial_expression_recognition_mobilefacenet_2022july.onnx }" | ||
"{ yunet_model ym | ../face_detection_yunet/face_detection_yunet_2023mar.onnx | Usage: Path to the face detection yunet model, defaults to face_detection_yunet_2023mar.onnx }" | ||
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}" | ||
"{ backend_target t | 0 | Choose one of the backend-target pair to run this demo:\n" | ||
"0: (default) OpenCV implementation + CPU,\n" | ||
"1: CUDA + GPU (CUDA),\n" | ||
"2: CUDA + GPU (CUDA FP16),\n" | ||
"3: TIM-VX + NPU,\n" | ||
"4: CANN + NPU}" | ||
"{ save s | false | Specify to save results.}" | ||
"{ vis v | true | Specify to open a window for result visualization.}" | ||
; | ||
|
||
|
||
int main(int argc, char** argv) | ||
{ | ||
CommandLineParser parser(argc, argv, keys); | ||
|
||
parser.about("Facial Expression Recognition"); | ||
if (parser.has("help")) | ||
{ | ||
parser.printMessage(); | ||
return 0; | ||
} | ||
|
||
string modelPath = parser.get<string>("model"); | ||
string yunetModelPath = parser.get<string>("yunet_model"); | ||
string inputPath = parser.get<string>("input"); | ||
uint8_t backendTarget = parser.get<uint8_t>("backend_target"); | ||
bool saveFlag = parser.get<bool>("save"); | ||
bool visFlag = parser.get<bool>("vis"); | ||
|
||
if (modelPath.empty()) | ||
CV_Error(Error::StsError, "Model file " + modelPath + " not found"); | ||
|
||
if (yunetModelPath.empty()) | ||
CV_Error(Error::StsError, "Face Detection Model file " + yunetModelPath + " not found"); | ||
|
||
YuNet faceDetectionModel(yunetModelPath); | ||
FER expressionRecognitionModel(modelPath, backend_target_pairs[backendTarget].first, backend_target_pairs[backendTarget].second); | ||
|
||
VideoCapture cap; | ||
if (!inputPath.empty()) | ||
cap.open(samples::findFile(inputPath)); | ||
else | ||
cap.open(0); | ||
|
||
if (!cap.isOpened()) | ||
CV_Error(Error::StsError, "Cannot opend video or file"); | ||
|
||
Mat frame; | ||
static const std::string kWinName = "Facial Expression Demo"; | ||
|
||
|
||
while (waitKey(1) < 0) | ||
{ | ||
cap >> frame; | ||
|
||
if (frame.empty()) | ||
{ | ||
if(inputPath.empty()) | ||
cout << "Frame is empty" << endl; | ||
break; | ||
} | ||
|
||
faceDetectionModel.setInputSize(frame.size()); | ||
|
||
Mat faces = faceDetectionModel.infer(frame); | ||
vector<String> expressions; | ||
|
||
for (int i = 0; i < faces.rows; ++i) | ||
{ | ||
Mat face = faces.row(i); | ||
String exp = expressionRecognitionModel.infer(frame, face); | ||
expressions.push_back(exp); | ||
|
||
int x1 = static_cast<int>(faces.at<float>(i, 0)); | ||
int y1 = static_cast<int>(faces.at<float>(i, 1)); | ||
int w = static_cast<int>(faces.at<float>(i, 2)); | ||
int h = static_cast<int>(faces.at<float>(i, 3)); | ||
float conf = faces.at<float>(i, 14); | ||
|
||
std::cout << cv::format("%d: x1=%d, y1=%d, w=%d, h=%d, conf=%.4f expression=%s\n", i, x1, y1, w, h, conf, exp.c_str()); | ||
|
||
} | ||
|
||
Mat res_frame = visualize(frame, faces, expressions); | ||
|
||
if(visFlag || inputPath.empty()) | ||
{ | ||
imshow(kWinName, res_frame); | ||
if(!inputPath.empty()) | ||
waitKey(0); | ||
} | ||
if(saveFlag) | ||
{ | ||
cout << "Results are saved to result.jpg" << endl; | ||
|
||
cv::imwrite("result.jpg", res_frame); | ||
} | ||
} | ||
|
||
|
||
return 0; | ||
|
||
} | ||
|
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.