Skip to content

add test files for importing gemm with external data #1259

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: 5.x
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added testdata/dnn/onnx/data/input_gemm_external_data.npy
Binary file not shown.
Binary file added testdata/dnn/onnx/data/output_gemm_external_data.npy
Binary file not shown.
54 changes: 54 additions & 0 deletions testdata/dnn/onnx/generate_onnx_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -2977,6 +2977,60 @@ def generate_gemm_dynmaic_inputs(name, inputA, inputB, inputC, path_data, path_m
"models"
)

## gemm with external data.

import numpy as np
import onnx
from onnx import helper, TensorProto, numpy_helper
from onnx.external_data_helper import convert_model_to_external_data
import os
import onnxruntime as ort

input_dim = 64
output_dim = 128
batch_dim = 32
onnx_model_path = "gemm_external_data.onnx"
B_filename = "gemm_external_data_B"
C_filename = "gemm_external_data_C"

A_data = np.random.randn(batch_dim, input_dim).astype(np.float32) # Batch size = 1

A = helper.make_tensor_value_info("A", TensorProto.FLOAT, A_data.shape)
Y = helper.make_tensor_value_info("Y", TensorProto.FLOAT, [batch_dim, output_dim])

np.random.seed(0)
B_data = np.random.randn(input_dim, output_dim).astype(np.float32)
C_data = np.random.randn(output_dim).astype(np.float32)

B_tensor = numpy_helper.from_array(B_data, name="B")
C_tensor = numpy_helper.from_array(C_data, name="C")

gemm_node = helper.make_node("Gemm", ["A", "B", "C"], ["Y"], alpha=1.0, beta=1.0, transB=0)
graph = helper.make_graph([gemm_node], "GEMMGraph", [A], [Y], [B_tensor, C_tensor])
model = helper.make_model(graph)
onnx.checker.check_model(model)

convert_model_to_external_data(
model,
all_tensors_to_one_file=False,
size_threshold=0, # Force all tensors to external
convert_attribute=False
)

for initializer in model.graph.initializer:
if initializer.name == "B":
initializer.external_data[0].value = B_filename
elif initializer.name == "C":
initializer.external_data[0].value = C_filename

onnx.save_model(model, onnx_model_path)

session = ort.InferenceSession(onnx_model_path)
outputs = session.run(None, {"A": A_data})
Y_data = outputs[0]

np.save("input_test_gemm_external_data.npy", A_data)
np.save("output_test_gemm_external_data.npy", Y_data)

# ########################## ReduceSum with Dynamic Batch ##########################
input_np = np.random.rand(2, 4, 4, 4).astype("float32")
Expand Down
Binary file added testdata/dnn/onnx/models/gemm_external_data.onnx
Binary file not shown.
Binary file added testdata/dnn/onnx/models/gemm_external_data_B
Binary file not shown.
Binary file added testdata/dnn/onnx/models/gemm_external_data_C
Binary file not shown.