Skip to content

Commit

Permalink
moved framework code to dwc_server, set up local training file
Browse files Browse the repository at this point in the history
  • Loading branch information
emilyzfliu committed Dec 4, 2020
1 parent b334e70 commit 7be6907
Show file tree
Hide file tree
Showing 2 changed files with 154 additions and 0 deletions.
66 changes: 66 additions & 0 deletions dwc_client.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import tensorflow as tf
import tensorflow_probability as tfp
import os
import numpy as np
import asyncio
from fastapi import FastAPI, WebSocket, File, UploadFile
from fastapi.responses import HTMLResponse, FileResponse
import websockets
import uuid
import glob

client_id = 'A'
model = None
inputs = None
outputs = None

# set up lightweight bayesian neural network
def sample_net(input_shape,
activation = tf.nn.relu,
batch_size = None):
def one_layer(x, dilation_rate=(1, 1, 1)):
x = tfpl.Convolution3DReparameterization(
filters,
kernel_size=3,
padding="same",
dilation_rate=dilation_rate,
activation=activation,
name="layer/vwnconv3d",
)(x)
x = tfkl.Activation(activation, name="layer/activation")(x)
return x

inputs = tf.keras.layers.input(shape = input_shape, batch_size=batch_size, name="inputs")
x = one_layer(inputs)

return tf.keras.Model(inputs=inputs, outputs=x)

def train(inputs, outputs):
if model == None:
model = sample_net(np.shape(inputs))
# input shape: 4 x 1
_op = 'adam'
_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
_metrics = ['accuracy']
model.compile(optimizer=_op, loss=_loss, metrics=_metrics)
model.fit(inputs=inputs, outputs=outputs, epochs=1, verbose=2)


def most_recent_consolidated():
list_of_files = glob.glob('/server/*')
latest_file = max(list_of_files, key=os.path.getctime)
return latest_file

# ping server side
@app.get('/')
async def send_weights():
return FileResponse('model-'+client_id+'.h5')

@app.post("/")
async def load_consolidated():
model.load_weights(most_recent_consolidated())
train()
return {'consolidated weights': model}
88 changes: 88 additions & 0 deletions dwc_server.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import tensorflow as tf
import os
import asyncio
from fastapi import FastAPI, WebSocket, File, UploadFile
from fastapi.responses import HTMLResponse, FileResponse
import websockets
import copy
import numpy as np
import uuid

app = FastAPI()

datasets = []
num_clients = 1
model = None

@app.get('/')
async def root:
return 'root'

@app.get("/{model}/")
async def update_model(model: tf.keras.Model):
return FileResponse('consolidated.h5')

@app.post("/weights")
async def load_weights(image: UploadFile = File(...)): #do we still need to load a file here
model.load_weights(image.filename)
datasets.append(copy.deepcopy(model))
dwc_frame()
return {'consolidated weights': model}

def load_data():
for root, dirs, files in os.walk(path):
for filename in files:
if filename[:6] != 'model-':
continue
model.load_weights(filename)
datasets.append(copy.deepcopy(model))


async def dwc_frame():
#load weights
load_data()

# need to figure out how to only run this code after all (or most) client weights

# dwc implementation
# what are the priors
model = distributed_weight_consolidation(datasets, priors)

model.save_weights(
'server/consolidated-'+uuid.uuid4().__str__()+'.h5',
save_format = 'h5')
update_model(model)


# LOOK AT THIS LATERRRRR

async def distributed_weight_consolidation(models_weights, model_priors):
# models is a list of weights of client-models; models = [model1, model2, model3...]
num_layers = int(len(model_weights[0])/2.0)
num_datasets = np.shape(model_weights)[0]
consolidated_model = model_weights[0]
mean_idx = [i for i in range(0,len(model_weights[0])) if i % 2 == 0]
std_idx = [i for i in range(0,len(model_weights[0])) if i % 2 != 0]
ep = 1e-5
for i in range(num_layers):
num_1 = 0; num_2 = 0
den_1 = 0; den_2 = 0
for m in range(num_datasets):
model = model_weights[m]
prior = model_priors[m]
mu_s = model[mean_idx[i]]
mu_o = prior[mean_idx[i]]
sig_s = model[std_idx[i]]
sig_o = prior[std_idx[i]]
d1 = np.power(sig_s,2) + ep; d2= np.power(sig_o,2) + ep
num_1 = num_1 + (mu_s/d1)
num_2 = num_2 + (mu_o/d2)
den_1 = den_1 + (1.0/d1)
den_2 = den_2 + (1.0/d2)
consolidated_model[mean_idx[i]] = (num_1 - num_2)/(den_1 -den_2)
consolidated_model[std_idx[i]] = 1/(den_1 -den_2)
return consolidated_model

0 comments on commit 7be6907

Please sign in to comment.