|
17 | 17 | from matplotlib import pyplot as plt
|
18 | 18 |
|
19 | 19 | from movement import sample_data
|
20 |
| -from movement.kinematics import compute_pairwise_distances |
| 20 | +from movement.kinematics import ( |
| 21 | + compute_forward_vector, |
| 22 | + compute_pairwise_distances, |
| 23 | +) |
21 | 24 |
|
22 | 25 | # %%
|
23 | 26 | # Load sample dataset
|
|
60 | 63 | # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
61 | 64 | # Get reference length
|
62 | 65 |
|
| 66 | +# Measure the long side of the box in pixels |
| 67 | +# Note the lens is a bit distorted |
63 | 68 | # Should I use diagonal?
|
64 | 69 | start_point = np.array([[209, 382]])
|
65 | 70 | end_point = np.array([[213, 1022]])
|
|
84 | 89 | ax.set_ylabel("y (pixels)")
|
85 | 90 | ax.set_title("Reference length")
|
86 | 91 |
|
87 |
| -# Measure the long side of the box in pixels |
88 |
| - |
89 |
| -# Note the lens is a bit distorted |
90 |
| - |
91 |
| - |
92 |
| -# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
93 |
| -# Plot keypoints on sample frames |
94 |
| - |
95 |
| -# time_sel = [5.0, 50.0, 100.0] |
96 |
| - |
97 |
| -# # get colormap tab20 |
98 |
| -# cmap = plt.get_cmap("tab20") |
99 |
| - |
100 |
| -# fig, axs = plt.subplots(len(time_sel), 1, figsize=(10, 15)) |
101 |
| -# for k in range(len(time_sel)): |
102 |
| -# for kpt_i, kpt in enumerate(ds.coords["keypoints"].data): |
103 |
| -# axs[k].scatter( |
104 |
| -# x=ds.position.sel(keypoints=kpt, space="x", time=time_sel[k]), |
105 |
| -# y=ds.position.sel(keypoints=kpt, space="y", time=time_sel[k]), |
106 |
| -# s=10, |
107 |
| -# label=f"{kpt}", |
108 |
| -# color=cmap(kpt_i), |
109 |
| -# ) |
110 |
| - |
111 |
| -# axs[k].axis("equal") |
112 |
| -# axs[k].invert_yaxis() |
113 |
| -# axs[k].set_xlabel("x (pixels)") |
114 |
| -# axs[k].set_ylabel("y (pixels)") |
115 |
| -# axs[k].set_title(f"Keypoints at {time_sel[k]} s") |
116 |
| -# # axs[k].legend(bbox_to_anchor=(1.1, 1.05)) |
117 |
| - |
118 | 92 |
|
119 | 93 | # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
120 | 94 | # Compute distances between keypoints on different individuals
|
|
133 | 107 | # from individual 1 to all keypoints on individual 2
|
134 | 108 | print(inter_individual_kpt_distances.shape) # inter_individual_distances
|
135 | 109 |
|
136 |
| -# normalise with reference length? |
137 |
| -inter_individual_kpt_distances_norm = ( |
138 |
| - inter_individual_kpt_distances / reference_length |
139 |
| -) |
| 110 | +# # normalise with reference length? |
| 111 | +# inter_individual_kpt_distances_norm = ( |
| 112 | +# inter_individual_kpt_distances / reference_length |
| 113 | +# ) |
140 | 114 |
|
141 | 115 | # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
142 | 116 | # Plot matrix of distances and keypoints
|
143 | 117 | # Show different patterns / positions between the two animals
|
144 |
| -# Note that the colorbars vary across frames! |
| 118 | +# Note that the colorbars vary across plots aka frames! |
145 | 119 |
|
146 | 120 | time_sel = [50.0, 100.0, 250.0]
|
147 | 121 |
|
|
170 | 144 | label=f"{kpt}",
|
171 | 145 | color=cmap(kpt_i),
|
172 | 146 | )
|
173 |
| - # # connect matching keypoints |
174 |
| - # axs[0].plot( |
175 |
| - # ds.position.sel(keypoints=kpt, space="x", time=time_sel[k]), |
176 |
| - # ds.position.sel(keypoints=kpt, space="y", time=time_sel[k]), |
177 |
| - # 'r' |
178 |
| - # ) |
179 | 147 |
|
180 | 148 | # add text per individual
|
181 | 149 | for ind in ds.coords["individuals"].data:
|
|
229 | 197 | # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
230 | 198 | # To get distance between homologous keypoints
|
231 | 199 | # get the diagonal of the previous matrix at each frame
|
232 |
| -inter_individual_same_kpts = np.diagonal(inter_individual_kpt_distances) |
| 200 | +inter_individual_same_kpts = np.diagonal( |
| 201 | + inter_individual_kpt_distances, |
| 202 | + axis1=1, |
| 203 | + axis2=2, |
| 204 | +) |
233 | 205 | print(inter_individual_same_kpts.shape) # (59999, 12)
|
234 | 206 |
|
235 | 207 |
|
|
240 | 212 | inter_individual_same_kpts[:, k_i],
|
241 | 213 | )
|
242 | 214 |
|
| 215 | +# # plot matrix as sparse matrix? |
| 216 | +# # plot vectors on top of a given frame? |
| 217 | +# for k in range(len(time_sel)): |
| 218 | +# fig, axs = plt.subplots(1, 2, figsize=(13, 5)) |
| 219 | +# fig.subplots_adjust(wspace=0.5) |
| 220 | + |
| 221 | +# # plot keypoints |
| 222 | +# for kpt_i, kpt in enumerate(ds.coords["keypoints"].data): |
| 223 | +# axs[0].scatter( |
| 224 | +# x=ds.position.sel(keypoints=kpt, space="x", time=time_sel[k]), |
| 225 | +# y=ds.position.sel(keypoints=kpt, space="y", time=time_sel[k]), |
| 226 | +# s=10, |
| 227 | +# label=f"{kpt}", |
| 228 | +# color=cmap(kpt_i), |
| 229 | +# ) |
| 230 | +# # connect matching keypoints |
| 231 | +# axs[0].plot( |
| 232 | +# ds.position.sel(keypoints=kpt, space="x", time=time_sel[k]), |
| 233 | +# ds.position.sel(keypoints=kpt, space="y", time=time_sel[k]), |
| 234 | +# "r", |
| 235 | +# ) |
243 | 236 |
|
244 | 237 | # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
245 | 238 |
|
246 |
| -# To get specific keypoints between individuals |
| 239 | +# To get distance between specific keypoints on different individuals |
247 | 240 | # e.g. snout of individual 1 to tail base of individual 2
|
248 |
| -# yo can select the relevant keypoints along the dimensions |
| 241 | +# you can select the relevant keypoint coordinates along the dimensions |
249 | 242 | # "individual1" and "individual2"
|
250 | 243 |
|
251 | 244 | distance_snout_1_to_tail_2 = inter_individual_kpt_distances.sel(
|
252 | 245 | individual1="snout", individual2="tailbase"
|
253 | 246 | )
|
254 | 247 |
|
255 |
| -# plot distance over time |
| 248 | +# plot distance from snout 1 to tailbase 2 over time |
| 249 | +# plot in a short time window? |
256 | 250 | fig, ax = plt.subplots()
|
257 | 251 | ax.plot(
|
258 | 252 | distance_snout_1_to_tail_2.time, # seconds
|
259 | 253 | distance_snout_1_to_tail_2 / reference_length,
|
260 | 254 | )
|
261 | 255 | ax.set_xlabel("time (seconds)")
|
262 |
| -ax.set_ylabel("distance normalised") |
| 256 | +ax.set_ylabel("distance snout-to-tail normalised") |
| 257 | + |
263 | 258 |
|
264 |
| -# plot vectors on top of a given frame? |
265 | 259 | # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
266 |
| -# Compute distances between the keypoints of the same individual |
| 260 | +# Compute distances between the keypoints on the same individual |
267 | 261 | # compute average bodylength = snout to tailbase
|
268 | 262 |
|
269 | 263 | distance_snout_to_tailbase_all = compute_pairwise_distances(
|
270 | 264 | ds.position,
|
271 | 265 | dim="keypoints",
|
272 | 266 | pairs={
|
273 | 267 | "snout": "tailbase",
|
274 |
| - # this will set the dims of the output (individuals will be the |
275 |
| - # coordinates) |
| 268 | + # this will set the dims of the output |
| 269 | + # (individuals will be the coordinates) |
276 | 270 | },
|
277 | 271 | ) # pixels
|
278 | 272 |
|
279 | 273 | print(distance_snout_to_tailbase_all) # dimensions are snout and tailbase!
|
280 | 274 |
|
281 |
| -# within individual |
| 275 | +# compute distances within individual |
282 | 276 | bodylength_individual_1 = distance_snout_to_tailbase_all.sel(
|
283 | 277 | snout="individual1",
|
284 | 278 | tailbase="individual1",
|
|
289 | 283 | tailbase="individual2",
|
290 | 284 | )
|
291 | 285 |
|
292 |
| -# across individuals |
| 286 | +# compute distances across individuals |
293 | 287 | # (an alternative way to the above)
|
294 | 288 | snout_1_to_tail_2 = distance_snout_to_tailbase_all.sel(
|
295 | 289 | snout="individual1",
|
|
300 | 294 | tailbase="individual1",
|
301 | 295 | )
|
302 | 296 |
|
| 297 | +# check that this approach is equivalent to the previous one |
303 | 298 | np.testing.assert_almost_equal(
|
304 | 299 | snout_1_to_tail_2.data, distance_snout_1_to_tail_2.data
|
305 | 300 | )
|
306 | 301 |
|
307 | 302 | # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
308 | 303 | # Plot bodylength over time
|
309 |
| - |
| 304 | +# as a histogram instead? |
310 | 305 | for b_i, bodylength_data_array in enumerate(
|
311 | 306 | [
|
312 | 307 | bodylength_individual_1,
|
|
330 | 325 | ax.set_ylabel("length (pixels)")
|
331 | 326 |
|
332 | 327 | # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
333 |
| -# Try usage of 'all' and plot matrix of four quadrants |
| 328 | +# Try usage of 'all' and plot distance matrix with four quadrants |
| 329 | + |
| 330 | +# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 331 | +# Compute distances between centroids |
| 332 | + |
| 333 | +distances_between_centroids = compute_pairwise_distances( |
| 334 | + ds.centroid, |
| 335 | + dim="individuals", |
| 336 | + pairs={ |
| 337 | + "individual1": "individual2", |
| 338 | + }, |
| 339 | +) |
| 340 | + |
| 341 | +print(distances_between_centroids.shape) # (59999,) |
| 342 | + |
| 343 | +# histogram |
| 344 | +fig, ax = plt.subplots() |
| 345 | +ax.hist( |
| 346 | + distances_between_centroids, |
| 347 | +) |
| 348 | +ax.set_xlabel("distance (pixels)") |
| 349 | +ax.set_ylabel("frames") # make it relative to the total number of frames? |
| 350 | +ax.set_title("Distances between centroids") |
| 351 | + |
| 352 | +# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 353 | +# Try a different metric, e.g cosine distance |
| 354 | +# https://en.wikipedia.org/wiki/Cosine_similarity |
| 355 | + |
| 356 | +# compute forward vector per individual |
| 357 | + |
| 358 | +ds["head_vector"] = compute_forward_vector( |
| 359 | + ds.position, |
| 360 | + left_keypoint="leftear", |
| 361 | + right_keypoint="rightear", |
| 362 | + camera_view="top_down", |
| 363 | +) |
334 | 364 |
|
| 365 | +# compute cosine distance between forward vectors |
| 366 | +# 1 - dot product of unit vectors |
| 367 | +cosine_distance_head_vectors = compute_pairwise_distances( |
| 368 | + ds.head_vector, |
| 369 | + dim="individuals", |
| 370 | + pairs={ |
| 371 | + "individual1": "individual2", |
| 372 | + }, |
| 373 | + metric="cosine", |
| 374 | +) |
| 375 | + |
| 376 | +# plot histogram |
| 377 | +# most of the time the vectors are antiparallel? |
| 378 | +fig, ax = plt.subplots() # figsize=(3, 3)) |
| 379 | +ax.hist( |
| 380 | + cosine_distance_head_vectors, |
| 381 | +) |
| 382 | +ax.set_xlabel("cosine distance") |
| 383 | +ax.set_ylabel("frames") |
335 | 384 | # %%
|
336 |
| -# Try a different metric |
|
0 commit comments