Skip to content

Add 2:4 sparsity as a quantization method #1

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 2 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions vllm/model_executor/layers/quantization/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,8 @@
GPTQMarlin24Config)
from vllm.model_executor.layers.quantization.marlin import MarlinConfig
from vllm.model_executor.layers.quantization.qqq import QQQConfig
from vllm.model_executor.layers.quantization.sparsity_24 import (
Sparsity24Config)
from vllm.model_executor.layers.quantization.squeezellm import SqueezeLLMConfig

QUANTIZATION_METHODS: Dict[str, Type[QuantizationConfig]] = {
Expand All @@ -39,6 +41,7 @@
"compressed-tensors": CompressedTensorsConfig,
"bitsandbytes": BitsAndBytesConfig,
"qqq": QQQConfig,
"sparsity_24": Sparsity24Config,
}


Expand Down
104 changes: 104 additions & 0 deletions vllm/model_executor/layers/quantization/sparsity_24.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
from typing import Any, Dict, List, Optional

import torch
from torch.nn import Module
from torch.nn.parameter import Parameter

from vllm.logger import init_logger
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.utils import set_weight_attrs

logger = init_logger(__name__)


class Sparsity24Config(QuantizationConfig):
"""Config class for 2:4 sparsity."""

def __init__(self) -> None:
return

@classmethod
def get_name(cls) -> str:
return "sparsity_24"

@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.bfloat16, torch.half]

@classmethod
def get_min_capability(cls) -> int:
return 80

@classmethod
def get_config_filenames(cls) -> List[str]:
return []

@classmethod
def from_config(cls, config: Dict[str, Any]) -> "Sparsity24Config":
return cls()

def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["QuantizeMethodBase"]:
if isinstance(layer, LinearBase):
return Sparsity24LinearMethod(self)
return None

def get_scaled_act_names(self) -> List[str]:
return []


class Sparsity24LinearMethod(LinearMethodBase):
"""Linear method for Sparsity24.
Supports loading FP16/BF16 model checkpoints as dense weights.

Args:
quant_config: The quantization config.
"""

def __init__(self, quant_config: Sparsity24Config):
self.quant_config = quant_config

def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
del input_size, output_size
output_size_per_partition = sum(output_partition_sizes)

layer.logical_widths = output_partition_sizes
layer.input_size_per_partition = input_size_per_partition
layer.output_size_per_partition = output_size_per_partition

# WEIGHT
weight = Parameter(torch.empty(output_size_per_partition,
input_size_per_partition,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("weight", weight)
set_weight_attrs(weight, {
**extra_weight_attrs,
"input_dim": 1,
"output_dim": 0,
})

def process_weights_after_loading(self, layer: Module) -> None:
from torch.sparse import to_sparse_semi_structured

layer.weight = torch.nn.Parameter(to_sparse_semi_structured(
layer.weight),
requires_grad=False)

def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:

return torch.nn.functional.linear(x, layer.weight, bias=bias)
Loading