Skip to content

Commit df43f31

Browse files
committed
Colaboratory를 통해 생성됨
1 parent b26f7cf commit df43f31

File tree

1 file changed

+293
-0
lines changed

1 file changed

+293
-0
lines changed
Lines changed: 293 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,293 @@
1+
{
2+
"nbformat": 4,
3+
"nbformat_minor": 0,
4+
"metadata": {
5+
"colab": {
6+
"name": "Numpy의 연산과 함수",
7+
"version": "0.3.2",
8+
"provenance": [],
9+
"include_colab_link": true
10+
},
11+
"kernelspec": {
12+
"name": "python3",
13+
"display_name": "Python 3"
14+
}
15+
},
16+
"cells": [
17+
{
18+
"cell_type": "markdown",
19+
"metadata": {
20+
"id": "view-in-github",
21+
"colab_type": "text"
22+
},
23+
"source": [
24+
"<a href=\"https://colab.research.google.com/github/ndb796/Python-Data-Analysis-and-Image-Processing-Tutorial/blob/master/04.%20Numpy%EC%9D%98%20%EC%97%B0%EC%82%B0%EA%B3%BC%20%ED%95%A8%EC%88%98/Numpy%EC%9D%98%20%EC%97%B0%EC%82%B0%EA%B3%BC%20%ED%95%A8%EC%88%98.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
25+
]
26+
},
27+
{
28+
"cell_type": "markdown",
29+
"metadata": {
30+
"id": "jflbKZvWIewX",
31+
"colab_type": "text"
32+
},
33+
"source": [
34+
"## Numpy의 기본 사용법\n",
35+
"[강의 노트](https://github.com/ndb796/Python-Data-Analysis-and-Image-Processing-Tutorial/blob/master/04.%20Numpy%EC%9D%98%20%EC%97%B0%EC%82%B0%EA%B3%BC%20%ED%95%A8%EC%88%98/Python%20%EB%8D%B0%EC%9D%B4%ED%84%B0%20%EB%B6%84%EC%84%9D%EA%B3%BC%20%EC%9D%B4%EB%AF%B8%EC%A7%80%20%EC%B2%98%EB%A6%AC%20-%20Numpy%EC%9D%98%20%EC%97%B0%EC%82%B0%EA%B3%BC%20%ED%95%A8%EC%88%98.pdf)"
36+
]
37+
},
38+
{
39+
"cell_type": "markdown",
40+
"metadata": {
41+
"id": "YMGeT2gmIqQO",
42+
"colab_type": "text"
43+
},
44+
"source": [
45+
"Python의 Numpy 라이브러리는 기본적인 상수 연산이 가능합니다."
46+
]
47+
},
48+
{
49+
"cell_type": "code",
50+
"metadata": {
51+
"id": "lB3TNlINIn33",
52+
"colab_type": "code",
53+
"colab": {
54+
"base_uri": "https://localhost:8080/",
55+
"height": 52
56+
},
57+
"outputId": "9293f423-94d0-4f3d-f4fa-3f1a5850de8c"
58+
},
59+
"source": [
60+
"import numpy as np\n",
61+
"\n",
62+
"array = np.random.randint(1, 10, size=4).reshape(2, 2)\n",
63+
"result_array = array * 10\n",
64+
"print(result_array)"
65+
],
66+
"execution_count": 1,
67+
"outputs": [
68+
{
69+
"output_type": "stream",
70+
"text": [
71+
"[[10 30]\n",
72+
" [40 80]]\n"
73+
],
74+
"name": "stdout"
75+
}
76+
]
77+
},
78+
{
79+
"cell_type": "markdown",
80+
"metadata": {
81+
"id": "3gXaKkCGI5lG",
82+
"colab_type": "text"
83+
},
84+
"source": [
85+
"**서로 다른 형태의 Numpy 연산**이 가능합니다."
86+
]
87+
},
88+
{
89+
"cell_type": "code",
90+
"metadata": {
91+
"id": "CjFI4tuPI1M2",
92+
"colab_type": "code",
93+
"colab": {
94+
"base_uri": "https://localhost:8080/",
95+
"height": 52
96+
},
97+
"outputId": "74cb0c4d-0e91-4d28-99d7-1b080dfa69be"
98+
},
99+
"source": [
100+
"import numpy as np\n",
101+
"\n",
102+
"array1 = np.arange(4).reshape(2, 2)\n",
103+
"array2 = np.arange(2)\n",
104+
"array3 = array1 + array2\n",
105+
"\n",
106+
"print(array3)"
107+
],
108+
"execution_count": 2,
109+
"outputs": [
110+
{
111+
"output_type": "stream",
112+
"text": [
113+
"[[0 2]\n",
114+
" [2 4]]\n"
115+
],
116+
"name": "stdout"
117+
}
118+
]
119+
},
120+
{
121+
"cell_type": "code",
122+
"metadata": {
123+
"id": "yoaNGmROI8Fk",
124+
"colab_type": "code",
125+
"colab": {
126+
"base_uri": "https://localhost:8080/",
127+
"height": 87
128+
},
129+
"outputId": "d88c62ad-e4ef-49aa-b40b-fbe9a9888ba6"
130+
},
131+
"source": [
132+
"import numpy as np\n",
133+
"\n",
134+
"array1 = np.arange(0, 8).reshape(2, 4)\n",
135+
"array2 = np.arange(0, 8).reshape(2, 4)\n",
136+
"array3 = np.concatenate([array1, array2], axis=0)\n",
137+
"array4 = np.arange(0, 4).reshape(4, 1)\n",
138+
"\n",
139+
"print(array3 + array4)"
140+
],
141+
"execution_count": 3,
142+
"outputs": [
143+
{
144+
"output_type": "stream",
145+
"text": [
146+
"[[ 0 1 2 3]\n",
147+
" [ 5 6 7 8]\n",
148+
" [ 2 3 4 5]\n",
149+
" [ 7 8 9 10]]\n"
150+
],
151+
"name": "stdout"
152+
}
153+
]
154+
},
155+
{
156+
"cell_type": "markdown",
157+
"metadata": {
158+
"id": "HR-bcngHJbo3",
159+
"colab_type": "text"
160+
},
161+
"source": [
162+
"Numpy의 **마스킹 연산**이 가능합니다."
163+
]
164+
},
165+
{
166+
"cell_type": "code",
167+
"metadata": {
168+
"id": "5XWPfcCEJK17",
169+
"colab_type": "code",
170+
"colab": {
171+
"base_uri": "https://localhost:8080/",
172+
"height": 228
173+
},
174+
"outputId": "499685e3-925b-428f-d922-63eab1ef1d82"
175+
},
176+
"source": [
177+
"import numpy as np\n",
178+
"\n",
179+
"# Numpy 원소의 값을 조건에 따라 바꿀 때는 다음과 같이 합니다.\n",
180+
"# 반복문을 이용할 때보다 매우 빠르게 동작합니다.\n",
181+
"# 대체로 이미지 처리(Image Processing)에서 자주 활용됩니다.\n",
182+
"array1 = np.arange(16).reshape(4, 4)\n",
183+
"print(array1)\n",
184+
"\n",
185+
"array2 = array1 < 10\n",
186+
"print(array2)\n",
187+
"\n",
188+
"array1[array2] = 100\n",
189+
"print(array1)"
190+
],
191+
"execution_count": 4,
192+
"outputs": [
193+
{
194+
"output_type": "stream",
195+
"text": [
196+
"[[ 0 1 2 3]\n",
197+
" [ 4 5 6 7]\n",
198+
" [ 8 9 10 11]\n",
199+
" [12 13 14 15]]\n",
200+
"[[ True True True True]\n",
201+
" [ True True True True]\n",
202+
" [ True True False False]\n",
203+
" [False False False False]]\n",
204+
"[[100 100 100 100]\n",
205+
" [100 100 100 100]\n",
206+
" [100 100 10 11]\n",
207+
" [ 12 13 14 15]]\n"
208+
],
209+
"name": "stdout"
210+
}
211+
]
212+
},
213+
{
214+
"cell_type": "markdown",
215+
"metadata": {
216+
"id": "NznH01UXJnpn",
217+
"colab_type": "text"
218+
},
219+
"source": [
220+
"Numpy는 **다양한 집계 함수**가 존재합니다."
221+
]
222+
},
223+
{
224+
"cell_type": "code",
225+
"metadata": {
226+
"id": "iPhu1aBhJR8O",
227+
"colab_type": "code",
228+
"colab": {
229+
"base_uri": "https://localhost:8080/",
230+
"height": 87
231+
},
232+
"outputId": "59d8968e-25cd-4828-c615-098b558c1f00"
233+
},
234+
"source": [
235+
"import numpy as np\n",
236+
"\n",
237+
"array = np.arange(16).reshape(4, 4)\n",
238+
"\n",
239+
"print(\"최대값:\", np.max(array))\n",
240+
"print(\"최소값:\", np.min(array))\n",
241+
"print(\"합계:\", np.sum(array))\n",
242+
"print(\"평균값:\", np.mean(array))"
243+
],
244+
"execution_count": 5,
245+
"outputs": [
246+
{
247+
"output_type": "stream",
248+
"text": [
249+
"최대값: 15\n",
250+
"최소값: 0\n",
251+
"합계: 120\n",
252+
"평균값: 7.5\n"
253+
],
254+
"name": "stdout"
255+
}
256+
]
257+
},
258+
{
259+
"cell_type": "code",
260+
"metadata": {
261+
"id": "2AQxs__jJP-L",
262+
"colab_type": "code",
263+
"colab": {
264+
"base_uri": "https://localhost:8080/",
265+
"height": 105
266+
},
267+
"outputId": "3446db66-a125-4f7e-c832-e1ecc181a17d"
268+
},
269+
"source": [
270+
"import numpy as np\n",
271+
"\n",
272+
"array = np.arange(16).reshape(4, 4)\n",
273+
"\n",
274+
"print(array)\n",
275+
"print(\"합계:\", np.sum(array, axis=0))"
276+
],
277+
"execution_count": 6,
278+
"outputs": [
279+
{
280+
"output_type": "stream",
281+
"text": [
282+
"[[ 0 1 2 3]\n",
283+
" [ 4 5 6 7]\n",
284+
" [ 8 9 10 11]\n",
285+
" [12 13 14 15]]\n",
286+
"합계: [24 28 32 36]\n"
287+
],
288+
"name": "stdout"
289+
}
290+
]
291+
}
292+
]
293+
}

0 commit comments

Comments
 (0)