1
+ {
2
+ "nbformat" : 4 ,
3
+ "nbformat_minor" : 0 ,
4
+ "metadata" : {
5
+ "colab" : {
6
+ "name" : " Numpy의 기본 사용법" ,
7
+ "version" : " 0.3.2" ,
8
+ "provenance" : [],
9
+ "include_colab_link" : true
10
+ },
11
+ "kernelspec" : {
12
+ "name" : " python3" ,
13
+ "display_name" : " Python 3"
14
+ }
15
+ },
16
+ "cells" : [
17
+ {
18
+ "cell_type" : " markdown" ,
19
+ "metadata" : {
20
+ "id" : " view-in-github" ,
21
+ "colab_type" : " text"
22
+ },
23
+ "source" : [
24
+ " <a href=\" https://colab.research.google.com/github/ndb796/Python-Data-Analysis-and-Image-Processing-Tutorial/blob/master/03.%20Numpy%EC%9D%98%20%EA%B8%B0%EB%B3%B8%20%EC%82%AC%EC%9A%A9%EB%B2%95/Numpy%EC%9D%98%20%EA%B8%B0%EB%B3%B8%20%EC%82%AC%EC%9A%A9%EB%B2%95.ipynb\" target=\" _parent\" ><img src=\" https://colab.research.google.com/assets/colab-badge.svg\" alt=\" Open In Colab\" /></a>"
25
+ ]
26
+ },
27
+ {
28
+ "cell_type" : " markdown" ,
29
+ "metadata" : {
30
+ "id" : " XK5zqqXSD5Vd" ,
31
+ "colab_type" : " text"
32
+ },
33
+ "source" : [
34
+ " ## Numpy의 기본 사용법\n " ,
35
+ " [강의 노트](https://github.com/ndb796/Python-Data-Analysis-and-Image-Processing-Tutorial/blob/master/04.%20Numpy%EC%9D%98%20%EC%97%B0%EC%82%B0%EA%B3%BC%20%ED%95%A8%EC%88%98/Python%20%EB%8D%B0%EC%9D%B4%ED%84%B0%20%EB%B6%84%EC%84%9D%EA%B3%BC%20%EC%9D%B4%EB%AF%B8%EC%A7%80%20%EC%B2%98%EB%A6%AC%20-%20Numpy%EC%9D%98%20%EC%97%B0%EC%82%B0%EA%B3%BC%20%ED%95%A8%EC%88%98.pdf)"
36
+ ]
37
+ },
38
+ {
39
+ "cell_type" : " markdown" ,
40
+ "metadata" : {
41
+ "id" : " hqGi-UyhFFBM" ,
42
+ "colab_type" : " text"
43
+ },
44
+ "source" : [
45
+ " Python의 Numpy 라이브러리는 List와 **상호 변환이 가능**합니다."
46
+ ]
47
+ },
48
+ {
49
+ "cell_type" : " code" ,
50
+ "metadata" : {
51
+ "id" : " G5AmgwzoENVh" ,
52
+ "colab_type" : " code" ,
53
+ "colab" : {
54
+ "base_uri" : " https://localhost:8080/" ,
55
+ "height" : 70
56
+ },
57
+ "outputId" : " 3de972b6-6dd8-4bf0-d559-5d800fdee864"
58
+ },
59
+ "source" : [
60
+ " import numpy as np\n " ,
61
+ " \n " ,
62
+ " array = np.array([1, 2, 3])\n " ,
63
+ " print(array.size) # 배열의 크기\n " ,
64
+ " print(array.dtype) # 배열 원소의 타입\n " ,
65
+ " print(array[2]) # 인덱스 2의 원소"
66
+ ],
67
+ "execution_count" : 18 ,
68
+ "outputs" : [
69
+ {
70
+ "output_type" : " stream" ,
71
+ "text" : [
72
+ " 3\n " ,
73
+ " int64\n " ,
74
+ " 3\n "
75
+ ],
76
+ "name" : " stdout"
77
+ }
78
+ ]
79
+ },
80
+ {
81
+ "cell_type" : " markdown" ,
82
+ "metadata" : {
83
+ "id" : " bzE_pyEHEUXU" ,
84
+ "colab_type" : " text"
85
+ },
86
+ "source" : [
87
+ " Python의 Numpy 라이브러리는 **다양한 형태의 배열**을 초기화 할 수 있습니다."
88
+ ]
89
+ },
90
+ {
91
+ "cell_type" : " code" ,
92
+ "metadata" : {
93
+ "id" : " MO-eC8rzEPKK" ,
94
+ "colab_type" : " code" ,
95
+ "colab" : {
96
+ "base_uri" : " https://localhost:8080/" ,
97
+ "height" : 263
98
+ },
99
+ "outputId" : " f3581290-5dfc-4995-b850-78579cfce320"
100
+ },
101
+ "source" : [
102
+ " import numpy as np\n " ,
103
+ " \n " ,
104
+ " # 0부터 3까지의 배열 만들기\n " ,
105
+ " array1 = np.arange(4)\n " ,
106
+ " print(array1)\n " ,
107
+ " \n " ,
108
+ " # 0으로 초기화\n " ,
109
+ " array2 = np.zeros((4, 4), dtype=float)\n " ,
110
+ " print(array2)\n " ,
111
+ " \n " ,
112
+ " # 1로 초기화\n " ,
113
+ " array3 = np.ones((3, 3), dtype=str)\n " ,
114
+ " print(array3)\n " ,
115
+ " \n " ,
116
+ " # 0부터 9까지 랜덤하게 초기화 된 배열 만들기\n " ,
117
+ " array4 = np.random.randint(0, 10, (3, 3))\n " ,
118
+ " print(array4)\n " ,
119
+ " \n " ,
120
+ " # 평균이 0이고 표준편차가 1인 표준 정규를 띄는 배열\n " ,
121
+ " array5 = np.random.normal(0, 1, (3, 3))\n " ,
122
+ " print(array5)"
123
+ ],
124
+ "execution_count" : 19 ,
125
+ "outputs" : [
126
+ {
127
+ "output_type" : " stream" ,
128
+ "text" : [
129
+ " [0 1 2 3]\n " ,
130
+ " [[0. 0. 0. 0.]\n " ,
131
+ " [0. 0. 0. 0.]\n " ,
132
+ " [0. 0. 0. 0.]\n " ,
133
+ " [0. 0. 0. 0.]]\n " ,
134
+ " [['1' '1' '1']\n " ,
135
+ " ['1' '1' '1']\n " ,
136
+ " ['1' '1' '1']]\n " ,
137
+ " [[9 6 6]\n " ,
138
+ " [6 2 1]\n " ,
139
+ " [1 6 3]]\n " ,
140
+ " [[-0.85995876 -2.27512351 -1.15556506]\n " ,
141
+ " [-0.5298595 0.18397865 0.03568352]\n " ,
142
+ " [ 0.00741686 -0.54831076 -1.38529353]]\n "
143
+ ],
144
+ "name" : " stdout"
145
+ }
146
+ ]
147
+ },
148
+ {
149
+ "cell_type" : " markdown" ,
150
+ "metadata" : {
151
+ "id" : " BjNuQEp7FWJ1" ,
152
+ "colab_type" : " text"
153
+ },
154
+ "source" : [
155
+ " Numpy는 다양한 형태로 **합치기가 가능** 있습니다."
156
+ ]
157
+ },
158
+ {
159
+ "cell_type" : " code" ,
160
+ "metadata" : {
161
+ "id" : " Yracqt2SEcDw" ,
162
+ "colab_type" : " code" ,
163
+ "colab" : {
164
+ "base_uri" : " https://localhost:8080/" ,
165
+ "height" : 52
166
+ },
167
+ "outputId" : " 1c4c399b-e848-4c82-aa9f-f2949b09b714"
168
+ },
169
+ "source" : [
170
+ " import numpy as np\n " ,
171
+ " \n " ,
172
+ " array1 = np.array([1, 2, 3]) \n " ,
173
+ " array2 = np.array([4, 5, 6])\n " ,
174
+ " array3 = np.concatenate([array1, array2])\n " ,
175
+ " \n " ,
176
+ " print(array3.shape)\n " ,
177
+ " print(array3)"
178
+ ],
179
+ "execution_count" : 20 ,
180
+ "outputs" : [
181
+ {
182
+ "output_type" : " stream" ,
183
+ "text" : [
184
+ " (6,)\n " ,
185
+ " [1 2 3 4 5 6]\n "
186
+ ],
187
+ "name" : " stdout"
188
+ }
189
+ ]
190
+ },
191
+ {
192
+ "cell_type" : " markdown" ,
193
+ "metadata" : {
194
+ "id" : " 4pN-EeEDGHb1" ,
195
+ "colab_type" : " text"
196
+ },
197
+ "source" : [
198
+ " Numpy를 위 아래로 합칠 수 있습니다."
199
+ ]
200
+ },
201
+ {
202
+ "cell_type" : " code" ,
203
+ "metadata" : {
204
+ "id" : " u5z29qIHGHiw" ,
205
+ "colab_type" : " code" ,
206
+ "colab" : {
207
+ "base_uri" : " https://localhost:8080/" ,
208
+ "height" : 87
209
+ },
210
+ "outputId" : " 5df72b78-0439-45eb-ff74-a3b8bd233ba4"
211
+ },
212
+ "source" : [
213
+ " import numpy as np\n " ,
214
+ " \n " ,
215
+ " array1 = np.arange(4).reshape(1, 4)\n " ,
216
+ " array2 = np.arange(8).reshape(2, 4)\n " ,
217
+ " array3 = np.concatenate([array1, array2], axis=0)\n " ,
218
+ " \n " ,
219
+ " print(array3.shape)\n " ,
220
+ " print(array3)"
221
+ ],
222
+ "execution_count" : 21 ,
223
+ "outputs" : [
224
+ {
225
+ "output_type" : " stream" ,
226
+ "text" : [
227
+ " (3, 4)\n " ,
228
+ " [[0 1 2 3]\n " ,
229
+ " [0 1 2 3]\n " ,
230
+ " [4 5 6 7]]\n "
231
+ ],
232
+ "name" : " stdout"
233
+ }
234
+ ]
235
+ },
236
+ {
237
+ "cell_type" : " markdown" ,
238
+ "metadata" : {
239
+ "id" : " 0kFRNyINFzRd" ,
240
+ "colab_type" : " text"
241
+ },
242
+ "source" : [
243
+ " Numpy의 **형태를 변경**할 수 있습니다."
244
+ ]
245
+ },
246
+ {
247
+ "cell_type" : " code" ,
248
+ "metadata" : {
249
+ "id" : " I-RVSif4Feht" ,
250
+ "colab_type" : " code" ,
251
+ "colab" : {
252
+ "base_uri" : " https://localhost:8080/" ,
253
+ "height" : 34
254
+ },
255
+ "outputId" : " a1fd982a-0e01-4bdb-9603-db80b58ce367"
256
+ },
257
+ "source" : [
258
+ " import numpy as np\n " ,
259
+ " \n " ,
260
+ " array1 = np.array([1, 2, 3, 4])\n " ,
261
+ " array2 = array1.reshape((2, 2))\n " ,
262
+ " print(array2.shape)"
263
+ ],
264
+ "execution_count" : 22 ,
265
+ "outputs" : [
266
+ {
267
+ "output_type" : " stream" ,
268
+ "text" : [
269
+ " (2, 2)\n "
270
+ ],
271
+ "name" : " stdout"
272
+ }
273
+ ]
274
+ },
275
+ {
276
+ "cell_type" : " markdown" ,
277
+ "metadata" : {
278
+ "id" : " ZIy_DX6bGDpd" ,
279
+ "colab_type" : " text"
280
+ },
281
+ "source" : [
282
+ " Numpy의 **형태를 나누기** 할 수 있습니다."
283
+ ]
284
+ },
285
+ {
286
+ "cell_type" : " code" ,
287
+ "metadata" : {
288
+ "id" : " yQGYnY2pF875" ,
289
+ "colab_type" : " code" ,
290
+ "colab" : {
291
+ "base_uri" : " https://localhost:8080/" ,
292
+ "height" : 70
293
+ },
294
+ "outputId" : " 1c84ae7d-f899-4066-8287-f5ad35e1abc3"
295
+ },
296
+ "source" : [
297
+ " import numpy as np\n " ,
298
+ " \n " ,
299
+ " array = np.arange(8).reshape(2, 4)\n " ,
300
+ " left, right = np.split(array, [2], axis=1)\n " ,
301
+ " \n " ,
302
+ " print(left.shape)\n " ,
303
+ " print(right.shape)\n " ,
304
+ " print(right[1][1])"
305
+ ],
306
+ "execution_count" : 23 ,
307
+ "outputs" : [
308
+ {
309
+ "output_type" : " stream" ,
310
+ "text" : [
311
+ " (2, 2)\n " ,
312
+ " (2, 2)\n " ,
313
+ " 7\n "
314
+ ],
315
+ "name" : " stdout"
316
+ }
317
+ ]
318
+ }
319
+ ]
320
+ }
0 commit comments