Implementation of YOLO v3 object detector in Tensorflow (TF-Slim). Full tutorial can be found here.
Tested on Python 3.5, Tensorflow 1.11.0 on Ubuntu 16.04.
- YOLO v3 architecture
 - Basic working demo
 - Weights converter (util for exporting loaded COCO weights as TF checkpoint)
 - Training pipeline
 - More backends
 
To run demo type this in the command line:
- Download COCO class names file: 
wget https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names - Download and convert model weights:
- Download binary file with desired weights:
- Full weights: 
wget https://pjreddie.com/media/files/yolov3.weights - Tiny weights: 
wget https://pjreddie.com/media/files/yolov3-tiny.weights - SPP weights: 
wget https://pjreddie.com/media/files/yolov3-spp.weights 
 - Full weights: 
 - Run 
python ./convert_weights.pyandpython ./convert_weights_pb.py 
 - Download binary file with desired weights:
 - Run 
python ./demo.py --input_img <path-to-image> --output_img <name-of-output-image> --frozen_model <path-to-frozen-model> 
####Optional Flags
- convert_weights:
--class_names- Path to the class names file
 
--weights_file- Path to the desired weights file
 
--data_formatNCHW(gpu only) orNHWC
--tiny- Use yolov3-tiny
 
--spp- Use yolov3-spp
 
--ckpt_file- Output checkpoint file
 
 - convert_weights_pb.py:
--class_names1. Path to the class names file--weights_file- Path to the desired weights file
 
--data_formatNCHW(gpu only) orNHWC
--tiny- Use yolov3-tiny
 
--spp- Use yolov3-spp
 
--output_graph- Location to write the output .pb graph to
 
 - demo.py
--class_names- Path to the class names file
 
--weights_file- Path to the desired weights file
 
--data_formatNCHW(gpu only) orNHWC
--ckpt_file- Path to the checkpoint file
 
--frozen_model- Path to the frozen model
 
--conf_threshold- Desired confidence threshold
 
--iou_threshold- Desired iou threshold
 
--gpu_memory_fraction- Fraction of gpu memory to work with