Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[webgpu] support Pad operator #23141

Merged
merged 13 commits into from
Mar 6, 2025
261 changes: 261 additions & 0 deletions onnxruntime/core/providers/webgpu/tensor/pad.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,261 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.

#include <string>
#include <vector>

#include "core/util/math.h"
#include "core/providers/webgpu/tensor/pad.h"
#include "core/providers/webgpu/shader_helper.h"
#include "core/providers/webgpu/webgpu_supported_types.h"

namespace onnxruntime {
namespace webgpu {

Status PadProgram::GenerateShaderCode(ShaderHelper& shader) const {
if (!dim_value_zero_) {
shader.AddInput("data", ShaderUsage::UseUniform | ShaderUsage::UseShapeAndStride);
}
const auto& output = shader.AddOutput("output", ShaderUsage::UseUniform | ShaderUsage::UseShapeAndStride | ShaderUsage::UseValueTypeAlias);

shader.MainFunctionBody() << shader.GuardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size");
std::string constant_value_str = std::string("let constant_value = ") +
(is_float16_ ? "bitcast<vec2<f16>>(uniforms.constant_value)[0];\n" : "bitcast<output_value_t>(uniforms.constant_value);\n");
if (dim_value_zero_) {
// Only Constant mode needs fill output if the one dim value or mores dims' values of input are zero.
shader.MainFunctionBody() << constant_value_str
<< "output[global_idx] = constant_value;\n";
return Status::OK();
}

shader.MainFunctionBody() << " let output_indices = " << output.OffsetToIndices("global_idx") << ";\n"
<< " var input_index = u32(0);\n"
<< " var use_pad_value = false;\n"
<< " var in_coord = i32(0);\n";

const int rank = output.Rank();
std::string output_indices_str = "i32(" + GetElementAt("output_indices", "dim", rank) + ")";
std::string lower_pads_str = GetElementAt("uniforms.lower_pads", "dim", rank);
std::string data_shape_str = "i32(" + GetElementAt("uniforms.data_shape", "dim", rank) + ")";
std::string data_stride_str = rank == 1 ? "" : " * " + GetElementAt("uniforms.data_stride", "dim", rank - 1);
std::string begin_axis_statement = "in_coord = ";
std::string end_axis_statement = "in_coord = ";
std::string in_axis_statement = "in_coord = " + output_indices_str + " - " + lower_pads_str + ";\n";
switch (mode_) {
case Mode::Constant:
begin_axis_statement = "use_pad_value = true;\n";
end_axis_statement = "use_pad_value = true;\n";
break;
case Mode::Edge:
begin_axis_statement += "0;\n";
end_axis_statement += data_shape_str + " - 1;\n";
break;
case Mode::Reflect:
begin_axis_statement += lower_pads_str + " - " + output_indices_str + ";\n";
end_axis_statement += data_shape_str + " - 2 - (" + output_indices_str +
" - (" + lower_pads_str + " + " + data_shape_str + "));\n";
break;
case Mode::Wrap:
begin_axis_statement += data_shape_str + " + " + output_indices_str + " - " + lower_pads_str + ";\n";
end_axis_statement += output_indices_str + " - " + lower_pads_str + " - " + data_shape_str + ";\n";
break;
default:
return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Unsupported mode type: ", static_cast<int>(mode_));
}

shader.MainFunctionBody() << " for (var dim = 0; dim < " << rank << " && !use_pad_value; dim++) {\n"
<< " if (" << output_indices_str << " < " << lower_pads_str << ") {\n"
<< " " << begin_axis_statement << " }\n"
<< " else if (" << output_indices_str << " >= " << lower_pads_str << " + " << data_shape_str << ") {\n"
<< " " << end_axis_statement << " }\n"
<< " else {\n"
<< " " << in_axis_statement << " }\n"
<< " input_index += select(u32(in_coord)" << data_stride_str << ", u32(in_coord), dim == " << rank - 1 << ");\n"
<< " }\n"
<< " " << constant_value_str
<< " " << output.SetByOffset("global_idx", "select(data[input_index], constant_value, use_pad_value)");

return Status::OK();
}

Status Pad::ComputeInternal(ComputeContext& context) const {
const Tensor* input_tensor = context.Input<Tensor>(0);
auto const& input_shape = input_tensor->Shape();
size_t dimension_count = input_shape.NumDimensions();

const PadsVector* p_pads = &pads_;
const PadsVector* p_slices = &slices_;

PadsVector pads;
PadsVector slices;
// kOnnxDomain Pad opset >= 11 (Or) kMsDomain opset == 1
if (is_dynamic_) {
size_t data_rank = input_tensor->Shape().NumDimensions();

const Tensor* pads_tensor = context.Input<Tensor>(1);
auto pads_tensor_dims = pads_tensor->Shape().GetDims();
ORT_ENFORCE(pads_tensor_dims.size() == 1 || (pads_tensor_dims.size() == 2 && pads_tensor_dims[0] == 1),
"Pads tensor should be a 1D tensor of shape [2 * num_axes] "
"or a 2D tensor of shape [1, 2 * num_axes]");

const auto pads_data = pads_tensor->DataAsSpan<int64_t>();

// Compute Pads by applying axes if specified otherwise copy the supplied pads.
PadBase::ComputePads(context.KernelContext(), data_rank, pads_data, pads);

// Separate out any negative pads into the slices array
PadBase::SeparateNegativeToSlices(pads, slices);

p_pads = &pads;
p_slices = &slices;
}

auto output_dims(input_shape.AsShapeVector());
ORT_ENFORCE(dimension_count * 2 == p_pads->size(), "'pads' attribute has wrong number of values");

// Calculate output dimensions, and handle any negative padding
std::vector<int32_t> lower_pads(dimension_count);
for (size_t i = 0; i < dimension_count; i++) {
int64_t lower_pad = (*p_pads)[i] + (*p_slices)[i];
int64_t upper_pad = (*p_pads)[i + dimension_count] + (*p_slices)[i + dimension_count];
lower_pads[i] = static_cast<int32_t>(lower_pad);
output_dims[i] += lower_pad + upper_pad;
}
TensorShape output_shape(output_dims);

// special case when there is a dim value of 0 in the shape. behavior depends on mode
bool dim_value_zero = input_shape.Size() == 0;
if (dim_value_zero) {
ORT_RETURN_IF_ERROR(PadBase::HandleDimValueZero(mode_, input_shape, output_shape));
}

auto* output_tensor = context.Output(0, output_shape);
uint32_t output_size = gsl::narrow<uint32_t>(output_shape.Size());
if (output_size == 0) {
// Do not need to fill output, return
return Status::OK();
}

// Read constant value and bitcast to uint32.
uint32_t value_uint32 = 0;
const auto data_type = input_tensor->GetElementType();
bool is_float16 = data_type == ONNX_NAMESPACE::TensorProto_DataType_FLOAT16;
const Tensor* value_tensor = context.Input<Tensor>(2);
if (!is_dynamic_) {
if (is_float16) {
uint16_t value = math::floatToHalf(value_);
std::memcpy(&value_uint32, &value, sizeof(value));
} else {
value_uint32 = *reinterpret_cast<const uint32_t*>(&value_);
}
} else if (value_tensor) {
ORT_ENFORCE(value_tensor->DataType() == input_tensor->DataType() && value_tensor->Shape().Size() == 1,
"Value tensor should be a 1D tensor of size 1 with the same type as that of the input tensor");
switch (data_type) {
case ONNX_NAMESPACE::TensorProto_DataType_INT32: {
int32_t value = value_tensor->Data<int32_t>()[0];
value_uint32 = *reinterpret_cast<uint32_t*>(&value);
} break;
case ONNX_NAMESPACE::TensorProto_DataType_FLOAT: {
float value = value_tensor->Data<float>()[0];
value_uint32 = *reinterpret_cast<uint32_t*>(&value);
} break;
case ONNX_NAMESPACE::TensorProto_DataType_FLOAT16: {
uint16_t value = value_tensor->Data<MLFloat16>()[0].val;
std::memcpy(&value_uint32, &value, sizeof(value));
} break;
case ONNX_NAMESPACE::TensorProto_DataType_UINT32: {
value_uint32 = value_tensor->Data<uint32_t>()[0];
} break;
default:
return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Unsupported input type: ", static_cast<int>(data_type));
}
}

PadProgram program{mode_, dim_value_zero, is_float16};
if (!dim_value_zero) {
program.AddInput({input_tensor, ProgramTensorMetadataDependency::TypeAndRank});
}
program.AddOutput({output_tensor, ProgramTensorMetadataDependency::Rank})
.SetDispatchGroupSize((output_size + WORKGROUP_SIZE - 1) / WORKGROUP_SIZE)
.CacheHint(std::to_string(static_cast<int>(mode_)), dim_value_zero)
.AddUniformVariables({{gsl::span<const int32_t>(lower_pads.data(), lower_pads.size())}, {output_size}, {value_uint32}});

return context.RunProgram(program);
}

ONNX_OPERATOR_VERSIONED_KERNEL_EX(
Pad,
kOnnxDomain,
2, 10,
kWebGpuExecutionProvider,
(*KernelDefBuilder::Create())
.TypeConstraint("T", WebGpuSupportedNumberTypes()),
Pad);
ONNX_OPERATOR_VERSIONED_KERNEL_EX(
Pad,
kOnnxDomain,
11, 12,
kWebGpuExecutionProvider,
(*KernelDefBuilder::Create())
.InputMemoryType(OrtMemTypeCPUInput, 1)
.InputMemoryType(OrtMemTypeCPUInput, 2)
.TypeConstraint("T", WebGpuSupportedNumberTypes()),
Pad);
ONNX_OPERATOR_VERSIONED_KERNEL_EX(
Pad,
kOnnxDomain,
13, 17,
kWebGpuExecutionProvider,
(*KernelDefBuilder::Create())
.InputMemoryType(OrtMemTypeCPUInput, 1)
.InputMemoryType(OrtMemTypeCPUInput, 2)
.TypeConstraint("T", WebGpuSupportedNumberTypes()),
Pad);
ONNX_OPERATOR_VERSIONED_KERNEL_EX(
Pad,
kOnnxDomain,
18, 18,
kWebGpuExecutionProvider,
(*KernelDefBuilder::Create())
.InputMemoryType(OrtMemTypeCPUInput, 1)
.InputMemoryType(OrtMemTypeCPUInput, 2)
.InputMemoryType(OrtMemTypeCPUInput, 3)
.TypeConstraint("T", WebGpuSupportedNumberTypes()),
Pad);
ONNX_OPERATOR_VERSIONED_KERNEL_EX(
Pad,
kOnnxDomain,
19, 20,
kWebGpuExecutionProvider,
(*KernelDefBuilder::Create())
.InputMemoryType(OrtMemTypeCPUInput, 1)
.InputMemoryType(OrtMemTypeCPUInput, 2)
.InputMemoryType(OrtMemTypeCPUInput, 3)
.TypeConstraint("T", WebGpuSupportedNumberTypes()),
Pad);
ONNX_OPERATOR_VERSIONED_KERNEL_EX(
Pad,
kOnnxDomain,
21, 22,
kWebGpuExecutionProvider,
(*KernelDefBuilder::Create())
.InputMemoryType(OrtMemTypeCPUInput, 1)
.InputMemoryType(OrtMemTypeCPUInput, 2)
.InputMemoryType(OrtMemTypeCPUInput, 3)
.TypeConstraint("T", WebGpuSupportedNumberTypes()),
Pad);
ONNX_OPERATOR_KERNEL_EX(
Pad,
kOnnxDomain,
23,
kWebGpuExecutionProvider,
(*KernelDefBuilder::Create())
.InputMemoryType(OrtMemTypeCPUInput, 1)
.InputMemoryType(OrtMemTypeCPUInput, 2)
.InputMemoryType(OrtMemTypeCPUInput, 3)
.TypeConstraint("T", WebGpuSupportedNumberTypes()),
Pad);

} // namespace webgpu
} // namespace onnxruntime
40 changes: 40 additions & 0 deletions onnxruntime/core/providers/webgpu/tensor/pad.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.

#pragma once

#include "core/providers/webgpu/program.h"
#include "core/providers/webgpu/webgpu_kernel.h"
#include "core/providers/cpu/tensor/padbase.h"

namespace onnxruntime {
namespace webgpu {

class PadProgram final : public Program<PadProgram> {
public:
PadProgram(const Mode mode, bool dim_value_zero, bool is_float16) : Program<PadProgram>{"Pad"},
mode_{mode},
dim_value_zero_{dim_value_zero},
is_float16_{is_float16} {}

Status GenerateShaderCode(ShaderHelper& sh) const override;

WEBGPU_PROGRAM_DEFINE_UNIFORM_VARIABLES({"lower_pads", ProgramUniformVariableDataType::Int32},
{"output_size", ProgramUniformVariableDataType::Uint32},
{"constant_value", ProgramUniformVariableDataType::Uint32});

private:
Mode mode_;
bool dim_value_zero_;
bool is_float16_;
};

class Pad final : public PadBase, public WebGpuKernel {
public:
Pad(const OpKernelInfo& info) : PadBase(info), WebGpuKernel(info) {}

Status ComputeInternal(ComputeContext& context) const override;
};

} // namespace webgpu
} // namespace onnxruntime
16 changes: 10 additions & 6 deletions onnxruntime/core/providers/webgpu/webgpu_execution_provider.cc
Original file line number Diff line number Diff line change
Expand Up @@ -363,7 +363,9 @@ class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxD
class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 11, 12, Pad);
class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 13, 17, Pad);
class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 18, 18, Pad);
class ONNX_OPERATOR_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 19, Pad);
class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 19, 20, Pad);
class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 21, 22, Pad);
class ONNX_OPERATOR_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 23, Pad);

class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 1, 10, If);
class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 11, 12, If);
Expand Down Expand Up @@ -685,11 +687,13 @@ std::unique_ptr<KernelRegistry> RegisterKernels() {

// BuildKernelCreateInfo<ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 12, float, Einsum)>,

// BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 2, 10, Pad)>,
// BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 11, 12, Pad)>,
// BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 13, 17, Pad)>,
// BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 18, 18, Pad)>,
// BuildKernelCreateInfo<ONNX_OPERATOR_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 19, Pad)>,
BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 2, 10, Pad)>,
BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 11, 12, Pad)>,
BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 13, 17, Pad)>,
BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 18, 18, Pad)>,
BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 19, 20, Pad)>,
BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 21, 22, Pad)>,
BuildKernelCreateInfo<ONNX_OPERATOR_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 23, Pad)>,

// BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 1, 10, If)>,
// BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 11, 12, If)>,
Expand Down
Loading