-
Notifications
You must be signed in to change notification settings - Fork 3.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[CUDA] stable diffusion benchmark allows IO binding for optimum #22834
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
You can commit the suggested changes from lintrunner.
onnxruntime/python/tools/transformers/models/stable_diffusion/benchmark.py
Outdated
Show resolved
Hide resolved
onnxruntime/python/tools/transformers/models/stable_diffusion/benchmark.py
Outdated
Show resolved
Hide resolved
We should upgrade the Optimum version here once those changes are merged. Line 15 in 3cccde4
|
kunal-vaishnavi
approved these changes
Nov 14, 2024
ishwar-raut1
pushed a commit
to ishwar-raut1/onnxruntime
that referenced
this pull request
Nov 19, 2024
…osoft#22834) ### Description Update stable diffusion benchmark: (1) allow IO binding for optimum. (2) do not use num_images_per_prompt across all engines for fair comparison. Example to run benchmark of optimum on stable diffusion 1.5: ``` git clone https://github.com/tianleiwu/optimum cd optimum git checkout tlwu/diffusers-io-binding pip install -e . pip install -U onnxruntime-gpu git clone https://github.com/microsoft/onnxruntime cd onnxruntime/onnxruntime/python/tools/transformers/models/stable_diffusion git checkout tlwu/benchmark_sd_optimum_io_binding pip install -r requirements/cuda12/requirements.txt optimum-cli export onnx --model runwayml/stable-diffusion-v1-5 --task text-to-image ./sd_onnx_fp32 python optimize_pipeline.py -i ./sd_onnx_fp32 -o ./sd_onnx_fp16 --float16 python benchmark.py -e optimum -r cuda -v 1.5 -p ./sd_onnx_fp16 python benchmark.py -e optimum -r cuda -v 1.5 -p ./sd_onnx_fp16 --use_io_binding ``` Example output in H100_80GB_HBM3: 572 ms with IO Binding; 588 ms without IO Binding; IO binding gains 16ms, or 2.7%, ### Motivation and Context Optimum is working on enabling I/O binding: huggingface/optimum#2056. This could help testing the impact of I/O binding on the performance of the stable diffusion.
guschmue
pushed a commit
that referenced
this pull request
Dec 2, 2024
### Description Update stable diffusion benchmark: (1) allow IO binding for optimum. (2) do not use num_images_per_prompt across all engines for fair comparison. Example to run benchmark of optimum on stable diffusion 1.5: ``` git clone https://github.com/tianleiwu/optimum cd optimum git checkout tlwu/diffusers-io-binding pip install -e . pip install -U onnxruntime-gpu git clone https://github.com/microsoft/onnxruntime cd onnxruntime/onnxruntime/python/tools/transformers/models/stable_diffusion git checkout tlwu/benchmark_sd_optimum_io_binding pip install -r requirements/cuda12/requirements.txt optimum-cli export onnx --model runwayml/stable-diffusion-v1-5 --task text-to-image ./sd_onnx_fp32 python optimize_pipeline.py -i ./sd_onnx_fp32 -o ./sd_onnx_fp16 --float16 python benchmark.py -e optimum -r cuda -v 1.5 -p ./sd_onnx_fp16 python benchmark.py -e optimum -r cuda -v 1.5 -p ./sd_onnx_fp16 --use_io_binding ``` Example output in H100_80GB_HBM3: 572 ms with IO Binding; 588 ms without IO Binding; IO binding gains 16ms, or 2.7%, ### Motivation and Context Optimum is working on enabling I/O binding: huggingface/optimum#2056. This could help testing the impact of I/O binding on the performance of the stable diffusion.
ankitm3k
pushed a commit
to intel/onnxruntime
that referenced
this pull request
Dec 11, 2024
…osoft#22834) ### Description Update stable diffusion benchmark: (1) allow IO binding for optimum. (2) do not use num_images_per_prompt across all engines for fair comparison. Example to run benchmark of optimum on stable diffusion 1.5: ``` git clone https://github.com/tianleiwu/optimum cd optimum git checkout tlwu/diffusers-io-binding pip install -e . pip install -U onnxruntime-gpu git clone https://github.com/microsoft/onnxruntime cd onnxruntime/onnxruntime/python/tools/transformers/models/stable_diffusion git checkout tlwu/benchmark_sd_optimum_io_binding pip install -r requirements/cuda12/requirements.txt optimum-cli export onnx --model runwayml/stable-diffusion-v1-5 --task text-to-image ./sd_onnx_fp32 python optimize_pipeline.py -i ./sd_onnx_fp32 -o ./sd_onnx_fp16 --float16 python benchmark.py -e optimum -r cuda -v 1.5 -p ./sd_onnx_fp16 python benchmark.py -e optimum -r cuda -v 1.5 -p ./sd_onnx_fp16 --use_io_binding ``` Example output in H100_80GB_HBM3: 572 ms with IO Binding; 588 ms without IO Binding; IO binding gains 16ms, or 2.7%, ### Motivation and Context Optimum is working on enabling I/O binding: huggingface/optimum#2056. This could help testing the impact of I/O binding on the performance of the stable diffusion.
ankitm3k
pushed a commit
to intel/onnxruntime
that referenced
this pull request
Dec 11, 2024
…osoft#22834) ### Description Update stable diffusion benchmark: (1) allow IO binding for optimum. (2) do not use num_images_per_prompt across all engines for fair comparison. Example to run benchmark of optimum on stable diffusion 1.5: ``` git clone https://github.com/tianleiwu/optimum cd optimum git checkout tlwu/diffusers-io-binding pip install -e . pip install -U onnxruntime-gpu git clone https://github.com/microsoft/onnxruntime cd onnxruntime/onnxruntime/python/tools/transformers/models/stable_diffusion git checkout tlwu/benchmark_sd_optimum_io_binding pip install -r requirements/cuda12/requirements.txt optimum-cli export onnx --model runwayml/stable-diffusion-v1-5 --task text-to-image ./sd_onnx_fp32 python optimize_pipeline.py -i ./sd_onnx_fp32 -o ./sd_onnx_fp16 --float16 python benchmark.py -e optimum -r cuda -v 1.5 -p ./sd_onnx_fp16 python benchmark.py -e optimum -r cuda -v 1.5 -p ./sd_onnx_fp16 --use_io_binding ``` Example output in H100_80GB_HBM3: 572 ms with IO Binding; 588 ms without IO Binding; IO binding gains 16ms, or 2.7%, ### Motivation and Context Optimum is working on enabling I/O binding: huggingface/optimum#2056. This could help testing the impact of I/O binding on the performance of the stable diffusion.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Description
Update stable diffusion benchmark:
(1) allow IO binding for optimum.
(2) do not use num_images_per_prompt across all engines for fair comparison.
Example to run benchmark of optimum on stable diffusion 1.5:
Example output in H100_80GB_HBM3: 572 ms with IO Binding; 588 ms without IO Binding; IO binding gains 16ms, or 2.7%,
Motivation and Context
Optimum is working on enabling I/O binding: huggingface/optimum#2056. This could help testing the impact of I/O binding on the performance of the stable diffusion.