This project enables image object detection using a YOLOv8 model hosted on AWS SageMaker, accessible via a REST API powered by Lambda and API Gateway. Users can send images via a REST API endpoint and receive annotated images with detected bounding boxes.
All setup instructions, deployment details, and troubleshooting steps are
organized in the docs/
folder.
📄 Document | Description |
---|---|
1-overview.md | System architecture and high-level project overview |
2-sagemaker-setup.md | Setup SageMaker model, inference script, and deployment |
3-lambda-function.md | Lambda function logic, permissions, and deployment |
4-api-gateway.md | API Gateway configuration, routes, and URL structure |
5-local-testing.md | Test from local PC using curl or Python requests |
6-troubleshooting.md | Fix common issues, error codes, and log locations |
7-references.md | Useful external links and AWS documentation |
mim download mmyolo \
--config yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco \
--dest models/yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco
conda create -n mmyolo python=3.8
conda activate mmyolo
pip install -r src/requirements.txt
pip install -r scripts/requirements.txt
AWS_PROFILE=your-profile python scripts/deploy.py
python src/test_yolo_locally.py # Should show a window with detection