Skip to content

Commit

Permalink
prove the repl_in_F/P_cancel lemmas used for Beth
Browse files Browse the repository at this point in the history
  • Loading branch information
m4lvin committed Feb 3, 2025
1 parent 112f2fc commit f819fc3
Show file tree
Hide file tree
Showing 2 changed files with 39 additions and 4 deletions.
1 change: 1 addition & 0 deletions Pdl.lean
Original file line number Diff line number Diff line change
Expand Up @@ -23,3 +23,4 @@ import Pdl.Completeness
import Pdl.Distance
import Pdl.PartInterpolation
import Pdl.Interpolation
import Pdl.Beth
42 changes: 38 additions & 4 deletions Pdl/Beth.lean
Original file line number Diff line number Diff line change
Expand Up @@ -20,11 +20,45 @@ lemma taut_repl φ p q :
rw [this]
apply taut_φ

mutual
/-- Replacing `p` with a fresh `q` and then replacing `q` by `p` results in the original. -/
@[simp]
lemma repl_repl_cancel_via_non_occ φ p q : Sum.inl q ∉ φ.voc →
lemma repl_in_F_cancel_via_non_occ φ p q : Sum.inl q ∉ φ.voc →
repl_in_F q (·p) (repl_in_F p (·q) φ) = φ := by
sorry
intro q_not_in_ψ
cases φ <;> simp_all
case atom_prop q =>
by_cases q = p <;> aesop
case neg φ =>
have := repl_in_F_cancel_via_non_occ φ p q
aesop
case and φ1 φ2 =>
have := repl_in_F_cancel_via_non_occ φ1 p q
have := repl_in_F_cancel_via_non_occ φ2 p q
aesop
case box α φ =>
have := repl_in_F_cancel_via_non_occ φ p q
have := repl_in_P_cancel_via_non_occ α p q
aesop
lemma repl_in_P_cancel_via_non_occ α p q : Sum.inl q ∉ α.voc →
repl_in_P q (·p) (repl_in_P p (·q) α) = α := by
intro q_not_in_α
cases α <;> simp_all
case sequence α1 α2 =>
have := repl_in_P_cancel_via_non_occ α1 p q
have := repl_in_P_cancel_via_non_occ α2 p q
aesop
case union α1 α2 =>
have := repl_in_P_cancel_via_non_occ α1 p q
have := repl_in_P_cancel_via_non_occ α2 p q
aesop
case test τ =>
have := repl_in_F_cancel_via_non_occ τ p q
aesop
case star α =>
have := repl_in_P_cancel_via_non_occ α p q
aesop
end

-- move to `Substitution.lean` after proving and using it
lemma non_occ_taut_then_repl_in_taut (φ ψ : Formula) (p q : ℕ) :
Expand Down Expand Up @@ -89,7 +123,7 @@ theorem beth (φ : Formula) (h : φ.implicitlyDefines p) :
clear ip_two
have := non_occ_taut_then_repl_in_taut ((repl_in_F p (·p0) φ⋀·p0)) ψ p0 p
simp only [repl_in_F, beq_self_eq_true, ↓reduceIte] at this
rw [repl_repl_cancel_via_non_occ _ p p0 ?_] at this
rw [repl_in_F_cancel_via_non_occ _ p p0 ?_] at this
apply this
· intro p0_in_ψ
specialize ip_voc p0_in_ψ
Expand All @@ -100,7 +134,7 @@ theorem beth (φ : Formula) (h : φ.implicitlyDefines p) :
specialize ip_voc p_in_ψ
simp at ip_voc
by_cases Sum.inl p ∈ φ.voc <;> simp_all [repl_in_F_voc_def]
aesop
omega
· assumption
· assumption
have ip_two_p : tautology (ψ ↣ (φ ↣ ·p)) := by
Expand Down

0 comments on commit f819fc3

Please sign in to comment.