-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
parts of modelEquiv_iff_bisimilar done
- Loading branch information
Showing
1 changed file
with
78 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,18 +1,88 @@ | ||
import Bml.Semantics | ||
|
||
def Bisimulation (W W': Type) (M : KripkeModel W) (M' : KripkeModel W') : Type := | ||
sorry | ||
def isBisimulation {W W': Type} (Z : W → W' → Prop) | ||
(M : KripkeModel W) (M' : KripkeModel W') : Prop := | ||
-- valuations | ||
(∀ w w' c, Z w w' → (M.val w c ↔ M'.val w' c)) | ||
-- forward | ||
∧ | ||
(∀ w w', Z w w' → ∀ v, M.Rel w v → (∃ v', Z v v' ∧ M'.Rel w' v')) | ||
-- backward | ||
∧ | ||
(∀ w w', Z w w' → ∀ v', M'.Rel w' v' → (∃ v, Z v v' ∧ M.Rel w v)) | ||
|
||
def bisimilar : (KripkeModel W × W) → (KripkeModel W × W) → Prop := | ||
sorry | ||
|
||
def bisimilar : (KripkeModel W × W) → (KripkeModel W' × W') → Prop | ||
| (M, w), (M', w') => ∃ Z, isBisimulation Z M M' ∧ Z w w' | ||
|
||
def modelEquiv (Mw : KripkeModel W × W) (Mw' : KripkeModel W' × W') : Prop := | ||
∀ (φ : Formula), Mw ⊨ φ ↔ Mw' ⊨ φ | ||
|
||
infixl:77 "≣" => modelEquiv | ||
|
||
theorem modelEquiv_iff_bisimilar (M : KripkeModel W) (w : W) : | ||
((M,w) ≣ (M',w')) ↔ bisimilar (M,w) (M',w') := by | ||
theorem modelEquiv_iff_bisimilar {W : Type} (finW : Fintype W) (finW' : Fintype W') | ||
(M : KripkeModel W) (w : W) (M' : KripkeModel W') (w' : W') : | ||
((M,w) ≣ (M',w')) ↔ bisimilar (M,w) (M',w') := by | ||
constructor | ||
· sorry | ||
· sorry | ||
· intro Mw_equiv_Mw | ||
unfold bisimilar | ||
simp | ||
unfold isBisimulation | ||
refine ⟨?Z, ⟨⟨?_, ?_, ?_⟩, ?_⟩⟩ | ||
· exact (fun v v' => (M,v) ≣ (M',v')) -- let Z be semantic equivalence | ||
· | ||
intro v v' c hZ | ||
-- unfold modelEquiv at hZ | ||
-- simp at hZ | ||
-- unfold Evaluate at hZ | ||
exact hZ (Formula.atom_prop c) | ||
· intro w w' c v w_v | ||
unfold modelEquiv at c | ||
unfold modelEquiv | ||
simp | ||
by_contra hyp | ||
simp at hyp | ||
let S' := { u' : finW'.elems // M'.Rel w' u' } | ||
have claim : ∀ wᵢ' : S', ∃ (ψᵢ : Formula), (M,v) ⊨ ψᵢ ∧ ¬ (M',wᵢ'.val.val)⊨ ψᵢ := by | ||
sorry | ||
let φ := ~(□(~ BigConjunction (sorry /- idea: map using choice and claim -/))) | ||
have : (M,w) ⊨ φ := by sorry | ||
have : ¬ (M',w') ⊨ φ := by sorry | ||
absurd c | ||
simp | ||
use φ | ||
tauto | ||
· | ||
sorry | ||
· exact Mw_equiv_Mw | ||
· intro Mw_bisim_Mw' | ||
unfold modelEquiv | ||
intro φ | ||
induction φ generalizing w w' with | ||
| bottom => | ||
simp | ||
| atom_prop p => | ||
rcases Mw_bisim_Mw' with ⟨Z, ⟨⟨hVal, _, _⟩, hZ⟩⟩ | ||
exact hVal w w' p hZ | ||
| neg φ ih => | ||
specialize ih w w' | ||
tauto | ||
| And φ ψ ihφ ihψ => | ||
specialize ihφ w w' | ||
specialize ihψ w w' | ||
simp | ||
rcases with ⟨ihφ,ihψ⟩ | ||
aesop | ||
| box φ ih => | ||
rcases Mw_bisim_Mw' with ⟨Z, ⟨⟨prop, forth, back⟩, w_Z_w'⟩ ⟩ | ||
constructor | ||
· intro w_boxphi | ||
simp | ||
intro v' w'_v' | ||
have := back _ _ w_Z_w' v' w'_v' | ||
rcases this with ⟨v, v_Z_v', w_v⟩ | ||
simp at w_boxphi | ||
have := w_boxphi v w_v | ||
specialize ih v v' ⟨Z, sorry⟩ | ||
tauto | ||
· sorry |