-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[Delinearization] Add function for fixed size array without relying on GEP #145050
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -24,6 +24,7 @@ | |
#include "llvm/IR/InstIterator.h" | ||
#include "llvm/IR/Instructions.h" | ||
#include "llvm/IR/PassManager.h" | ||
#include "llvm/Support/CommandLine.h" | ||
#include "llvm/Support/Debug.h" | ||
#include "llvm/Support/raw_ostream.h" | ||
|
||
|
@@ -32,6 +33,11 @@ using namespace llvm; | |
#define DL_NAME "delinearize" | ||
#define DEBUG_TYPE DL_NAME | ||
|
||
static cl::opt<bool> UseFixedSizeArrayHeuristic( | ||
"delinearize-use-fixed-size-array-heuristic", cl::init(false), cl::Hidden, | ||
cl::desc("When printing analysis, use the heuristic for fixed-size arrays " | ||
"if the default delinearizetion fails.")); | ||
|
||
// Return true when S contains at least an undef value. | ||
static inline bool containsUndefs(const SCEV *S) { | ||
return SCEVExprContains(S, [](const SCEV *S) { | ||
|
@@ -480,6 +486,179 @@ void llvm::delinearize(ScalarEvolution &SE, const SCEV *Expr, | |
}); | ||
} | ||
|
||
static std::optional<APInt> tryIntoAPInt(const SCEV *S) { | ||
if (const auto *Const = dyn_cast<SCEVConstant>(S)) | ||
return Const->getAPInt(); | ||
return std::nullopt; | ||
} | ||
|
||
/// Collects the absolute values of constant steps for all induction variables. | ||
/// Returns true if we can prove that all step recurrences are constants and \p | ||
/// Expr is divisible by \p ElementSize. Each step recurrence is stored in \p | ||
/// Steps after divided by \p ElementSize. | ||
static bool collectConstantAbsSteps(ScalarEvolution &SE, const SCEV *Expr, | ||
SmallVectorImpl<unsigned> &Steps, | ||
unsigned ElementSize) { | ||
// End of recursion. The constant value also must be a multiple of | ||
// ElementSize. | ||
if (const auto *Const = dyn_cast<SCEVConstant>(Expr)) { | ||
const unsigned Mod = Const->getAPInt().urem(ElementSize); | ||
return Mod == 0; | ||
} | ||
|
||
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Expr); | ||
if (!AR || !AR->isAffine()) | ||
return false; | ||
|
||
const SCEV *Step = AR->getStepRecurrence(SE); | ||
std::optional<APInt> StepAPInt = tryIntoAPInt(Step); | ||
if (!StepAPInt) | ||
return false; | ||
|
||
APInt Q; | ||
uint64_t R; | ||
APInt::udivrem(StepAPInt->abs(), ElementSize, Q, R); | ||
if (R != 0) | ||
return false; | ||
|
||
// Bail out when the step is too large. | ||
std::optional<unsigned> StepVal = Q.tryZExtValue(); | ||
if (!StepVal) | ||
return false; | ||
|
||
Steps.push_back(*StepVal); | ||
return collectConstantAbsSteps(SE, AR->getStart(), Steps, ElementSize); | ||
} | ||
|
||
static bool findFixedSizeArrayDimensions(ScalarEvolution &SE, const SCEV *Expr, | ||
SmallVectorImpl<unsigned> &Sizes, | ||
const SCEV *ElementSize) { | ||
if (!ElementSize) | ||
return false; | ||
|
||
std::optional<APInt> ElementSizeAPInt = tryIntoAPInt(ElementSize); | ||
if (!ElementSizeAPInt || *ElementSizeAPInt == 0) | ||
return false; | ||
|
||
std::optional<unsigned> ElementSizeConst = ElementSizeAPInt->tryZExtValue(); | ||
|
||
// Early exit when ElementSize is not a positive constant. | ||
if (!ElementSizeConst) | ||
return false; | ||
|
||
if (!collectConstantAbsSteps(SE, Expr, Sizes, *ElementSizeConst) || | ||
Sizes.empty()) { | ||
Sizes.clear(); | ||
return false; | ||
} | ||
|
||
// At this point, Sizes contains the absolute step recurrences for all | ||
// induction variables. Each step recurrence must be a multiple of the size of | ||
// the array element. Assuming that the each value represents the size of an | ||
// array for each dimension, attempts to restore the length of each dimension | ||
// by dividing the step recurrence by the next smaller value. For example, if | ||
// we have the following AddRec SCEV: | ||
// | ||
// AddRec: {{{0,+,2048}<%for.i>,+,256}<%for.j>,+,8}<%for.k> (ElementSize=8) | ||
// | ||
// Then Sizes will become [256, 32, 1] after sorted. We don't know the size of | ||
// the outermost dimension, the next dimension will be computed as 256 / 32 = | ||
// 8, and the last dimension will be computed as 32 / 1 = 32. Thus it results | ||
// in like Arr[UnknownSize][8][32] with elements of size 8 bytes, where Arr is | ||
// a base pointer. | ||
// | ||
// TODO: Catch more cases, e.g., when a step recurrence is not divisible by | ||
// the next smaller one, like A[i][3*j]. | ||
llvm::sort(Sizes.rbegin(), Sizes.rend()); | ||
Sizes.erase(llvm::unique(Sizes), Sizes.end()); | ||
for (unsigned I = 0; I + 1 < Sizes.size(); I++) { | ||
unsigned PrevSize = Sizes[I + 1]; | ||
if (Sizes[I] % PrevSize) { | ||
Sizes.clear(); | ||
return false; | ||
} | ||
Sizes[I] /= PrevSize; | ||
} | ||
|
||
// The last element should be ElementSize. | ||
Sizes.back() = *ElementSizeConst; | ||
return true; | ||
} | ||
|
||
/// Splits the SCEV into two vectors of SCEVs representing the subscripts and | ||
/// sizes of an array access, assuming that the array is a fixed size array. | ||
/// | ||
/// E.g., if we have the code like as follows: | ||
/// | ||
/// double A[42][8][32]; | ||
/// for i | ||
/// for j | ||
/// for k | ||
/// use A[i][j][k] | ||
/// | ||
/// The access function will be represented as an AddRec SCEV like: | ||
/// | ||
/// AddRec: {{{0,+,2048}<%for.i>,+,256}<%for.j>,+,8}<%for.k> (ElementSize=8) | ||
/// | ||
/// Then findFixedSizeArrayDimensions infers the size of each dimension of the | ||
/// array based on the fact that the value of the step recurrence is a multiple | ||
/// of the size of the corresponding array element. In the above example, it | ||
/// results in the following: | ||
/// | ||
/// CHECK: ArrayDecl[UnknownSize][8][32] with elements of 8 bytes. | ||
/// | ||
/// Finally each subscript will be computed as follows: | ||
/// | ||
/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] | ||
/// | ||
/// Note that this function doesn't check the range of possible values for each | ||
/// subscript, so the caller should perform additional boundary checks if | ||
/// necessary. | ||
/// | ||
/// Also note that this function doesn't guarantee that the original array size | ||
/// is restored "correctly". For example, in the following case: | ||
/// | ||
/// double A[42][4][64]; | ||
/// double B[42][8][32]; | ||
/// for i | ||
/// for j | ||
/// for k | ||
/// use A[i][j][k] | ||
/// use B[i][2*j][k] | ||
/// | ||
/// The access function for both accesses will be the same: | ||
/// | ||
/// AddRec: {{{0,+,2048}<%for.i>,+,512}<%for.j>,+,8}<%for.k> (ElementSize=8) | ||
/// | ||
/// The array sizes for both A and B will be computed as | ||
/// ArrayDecl[UnknownSize][4][64], which matches for A, but not for B. | ||
/// | ||
/// TODO: At the moment, this function can handle only simple cases. For | ||
/// example, we cannot handle a case where a step recurrence is not divisible | ||
/// by the next smaller step recurrence, e.g., A[i][3*j]. | ||
void llvm::delinearizeFixedSizeArray(ScalarEvolution &SE, const SCEV *Expr, | ||
SmallVectorImpl<const SCEV *> &Subscripts, | ||
SmallVectorImpl<const SCEV *> &Sizes, | ||
const SCEV *ElementSize) { | ||
|
||
// First step: find the fixed array size. | ||
SmallVector<unsigned, 4> ConstSizes; | ||
if (!findFixedSizeArrayDimensions(SE, Expr, ConstSizes, ElementSize)) { | ||
Sizes.clear(); | ||
return; | ||
} | ||
|
||
// Convert the constant size to SCEV. | ||
for (unsigned Size : ConstSizes) | ||
Sizes.push_back(SE.getConstant(Expr->getType(), Size)); | ||
|
||
// Second step: compute the access functions for each subscript. | ||
computeAccessFunctions(SE, Expr, Subscripts, Sizes); | ||
|
||
if (Subscripts.empty()) | ||
return; | ||
} | ||
|
||
bool llvm::getIndexExpressionsFromGEP(ScalarEvolution &SE, | ||
const GetElementPtrInst *GEP, | ||
SmallVectorImpl<const SCEV *> &Subscripts, | ||
|
@@ -586,9 +765,21 @@ void printDelinearization(raw_ostream &O, Function *F, LoopInfo *LI, | |
O << "AccessFunction: " << *AccessFn << "\n"; | ||
|
||
SmallVector<const SCEV *, 3> Subscripts, Sizes; | ||
|
||
auto IsDelinearizationFailed = [&]() { | ||
return Subscripts.size() == 0 || Sizes.size() == 0 || | ||
Subscripts.size() != Sizes.size(); | ||
}; | ||
|
||
delinearize(*SE, AccessFn, Subscripts, Sizes, SE->getElementSize(&Inst)); | ||
if (Subscripts.size() == 0 || Sizes.size() == 0 || | ||
Subscripts.size() != Sizes.size()) { | ||
if (UseFixedSizeArrayHeuristic && IsDelinearizationFailed()) { | ||
Subscripts.clear(); | ||
Sizes.clear(); | ||
delinearizeFixedSizeArray(*SE, AccessFn, Subscripts, Sizes, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Maybe we need to call Or maybe we can call There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I don't intend to change the behavior of existing passes with this patch. This is just an initial implementation, and this part of the code is for testing purposes. |
||
SE->getElementSize(&Inst)); | ||
} | ||
|
||
if (IsDelinearizationFailed()) { | ||
O << "failed to delinearize\n"; | ||
continue; | ||
} | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
To disambiguate this case, we need to transmit the array declarations
double A[42][4][32];
anddouble B[42][8][64];
to the LLVM IR.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Probably true, but I'm not sure if it makes sense to distinguish between them in this case. Also, my comment was wrong: The correct sizes are
A[42][4][64]
andB[42][8][32]
.