Skip to content

🐚 A summary of 9 mainstream algorithms practice, including : Logistic Regression / Decision Tree / Random Forest / Adaboost / SVM / Clustering / EM / Bayes Network / LDA / HMM.

Notifications You must be signed in to change notification settings

littleheap/MachineLearning-Algorithms

Repository files navigation

MachineLearning-Algorithms (机器学习算法项目整合)

项目背景

该项目是我个人在学习ML基础过程中,操纵实践基础算法的整理合集,每一个小项目中,都有最新的,基于Python3.6实践相应算法到数据上的代码。理论内容几乎协同《统计学习方法》,算法实战同时有着几乎最详尽的注释。所有都是在我学习每个算法基础理论推导后,调用第三方库函数和相关算法框架,实现相关基于机器学习的算法实战内容,查看实现效果。具体每个小项目中有Readme说明。欢迎了解和完善。

项目简介

名称 简介
1.Python Foundation Python基础要点回顾
2.Management Foundation 机器学习基础操作要点
3.Regression 回归算法实战
4.Decision Tree & Random Forest 决策树&随机森林算法实战
5.Boost Boost算法实战
6.SVM SVM支撑向量机实战
7.Cluster 聚类算法实战
8.EM Model EM算法实战
9.Bayes Network 贝叶斯网络实战
10.LDA Topic Model LDA主题模型实战
11.HMM HMM隐马尔可夫模型实战

About

🐚 A summary of 9 mainstream algorithms practice, including : Logistic Regression / Decision Tree / Random Forest / Adaboost / SVM / Clustering / EM / Bayes Network / LDA / HMM.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages