Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1284,6 +1284,7 @@ import Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Isometric
import Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.NonUnital
import Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Note
import Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Order
import Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Pi
import Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Restrict
import Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Unique
import Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Unital
Expand Down
26 changes: 26 additions & 0 deletions Mathlib/Algebra/Star/StarAlgHom.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,9 @@ Authors: Jireh Loreaux
import Mathlib.Algebra.Algebra.Equiv
import Mathlib.Algebra.Algebra.NonUnitalHom
import Mathlib.Algebra.Algebra.Prod
import Mathlib.Algebra.Algebra.Pi
import Mathlib.Algebra.Star.Prod
import Mathlib.Algebra.Star.Pi
import Mathlib.Algebra.Star.StarRingHom

/-!
Expand Down Expand Up @@ -520,6 +522,30 @@ def prodEquiv : (A →⋆ₙₐ[R] B) × (A →⋆ₙₐ[R] C) ≃ (A →⋆ₙ

end Prod

section Pi

variable {ι : Type*}

/-- `Function.eval` as a `NonUnitalStarAlgHom`. -/
@[simps]
def _root_.Pi.evalNonUnitalStarAlgHom (R : Type*) (A : ι → Type*) (j : ι) [Monoid R]
[∀ i, NonUnitalNonAssocSemiring (A i)] [∀ i, DistribMulAction R (A i)] [∀ i, Star (A i)] :
(∀ i, A i) →⋆ₙₐ[R] A j:=
{ Pi.evalMulHom A j, Pi.evalAddHom A j with
map_smul' _ _ := rfl
map_zero' := rfl
map_star' _ := rfl }

/-- `Function.eval` as a `StarAlgHom`. -/
@[simps]
def _root_.Pi.evalStarAlgHom (R : Type*) (A : ι → Type*) (j : ι) [CommSemiring R]
[∀ i, Semiring (A i)] [∀ i, Algebra R (A i)] [∀ i, Star (A i)] :
(∀ i, A i) →⋆ₐ[R] A j :=
{ Pi.evalNonUnitalStarAlgHom R A j, Pi.evalRingHom A j with
commutes' _ := rfl }

end Pi

section InlInr

variable (R A B C : Type*) [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A]
Expand Down
135 changes: 135 additions & 0 deletions Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Pi.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
/-
Copyright (c) 2025 Frédéric Dupuis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Frédéric Dupuis
-/

import Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Unique
import Mathlib.Algebra.Algebra.Spectrum.Pi
import Mathlib.Algebra.Star.StarAlgHom

/-! # The continuous functional calculus on product types

This file contains results about the continuous functional calculus on (indexed) product types.

## Main theorems

+ `cfc_map_pi` and `cfcₙ_map_pi`: given `a : ∀ i, A i`, then `cfc f a = fun i => cfc f (a i)`
(and likewise for the non-unital version)
+ `cfc_map_prod` and `cfcₙ_map_prod`: given `a : A` and `b : B`, then
`cfc f (a, b) = (cfc f a, cfc f b)` (and likewise for the non-unital version)
-/

section nonunital_pi

variable {ι R S : Type*} {A : ι → Type*} [CommSemiring R] [Nontrivial R] [StarRing R]
[MetricSpace R]
[IsTopologicalSemiring R] [ContinuousStar R] [CommRing S] [Algebra R S]
[∀ i, NonUnitalRing (A i)] [∀ i, Module S (A i)] [∀ i, Module R (A i)]
[∀ i, IsScalarTower R S (A i)] [∀ i, SMulCommClass R (A i) (A i)]
[∀ i, IsScalarTower R (A i) (A i)]
[∀ i, StarRing (A i)] [∀ i, TopologicalSpace (A i)] {p : (∀ i, A i) → Prop}
{q : (i : ι) → A i → Prop}
[NonUnitalContinuousFunctionalCalculus R (∀ i, A i) p]
[∀ i, NonUnitalContinuousFunctionalCalculus R (A i) (q i)]
[∀ i, ContinuousMapZero.UniqueHom R (A i)]

include S in
lemma cfcₙ_map_pi (f : R → R) (a : ∀ i, A i)
(hf : ContinuousOn f (⋃ i, quasispectrum R (a i)) := by cfc_cont_tac)
(ha : p a := by cfc_tac) (ha' : ∀ i, q i (a i) := by cfc_tac) :
cfcₙ f a = fun i => cfcₙ f (a i) := by
by_cases hempty : Nonempty ι
· by_cases hf₀ : f 0 = 0
· ext i
let φ := Pi.evalNonUnitalStarAlgHom S A i
exact φ.map_cfcₙ f a (by rwa [Pi.quasispectrum_eq]) hf₀ (continuous_apply i) ha (ha' i)
· simp only [cfcₙ_apply_of_not_map_zero _ hf₀]; rfl
· simp only [not_nonempty_iff] at hempty
ext i
exact hempty.elim i

end nonunital_pi

section nonunital_prod

variable {A B R S : Type*} [CommSemiring R] [CommRing S] [Nontrivial R] [StarRing R]
[MetricSpace R] [IsTopologicalSemiring R] [ContinuousStar R] [Algebra R S] [NonUnitalRing A]
[NonUnitalRing B] [Module S A] [Module R A] [Module R B] [Module S B]
[SMulCommClass R A A] [SMulCommClass R B B] [IsScalarTower R A A] [IsScalarTower R B B]
[StarRing A] [StarRing B] [TopologicalSpace A] [TopologicalSpace B]
[IsScalarTower R S A] [IsScalarTower R S B]
{pab : A × B → Prop} {pa : A → Prop} {pb : B → Prop}
[NonUnitalContinuousFunctionalCalculus R (A × B) pab]
[NonUnitalContinuousFunctionalCalculus R A pa]
[NonUnitalContinuousFunctionalCalculus R B pb]
[ContinuousMapZero.UniqueHom R A] [ContinuousMapZero.UniqueHom R B]

include S in
lemma cfcₙ_map_prod (f : R → R) (a : A) (b : B)
(hf : ContinuousOn f (quasispectrum R a ∪ quasispectrum R b) := by cfc_cont_tac)
(hab : pab (a, b) := by cfc_tac) (ha : pa a := by cfc_tac) (hb : pb b := by cfc_tac) :
cfcₙ f (a, b) = (cfcₙ f a, cfcₙ f b) := by
by_cases hf₀ : f 0 = 0
case pos =>
ext
case fst =>
let φ := NonUnitalStarAlgHom.fst S A B
exact φ.map_cfcₙ f (a, b) (by rwa [Prod.quasispectrum_eq]) hf₀ continuous_fst hab ha
case snd =>
let φ := NonUnitalStarAlgHom.snd S A B
exact φ.map_cfcₙ f (a, b) (by rwa [Prod.quasispectrum_eq]) hf₀ continuous_snd hab hb
case neg =>
simp [cfcₙ_apply_of_not_map_zero _ hf₀]

end nonunital_prod

section unital_pi

variable {ι R S : Type*} {A : ι → Type*} [CommSemiring R] [StarRing R] [MetricSpace R]
[IsTopologicalSemiring R] [ContinuousStar R] [CommRing S] [Algebra R S]
[∀ i, Ring (A i)] [∀ i, Algebra S (A i)] [∀ i, Algebra R (A i)] [∀ i, IsScalarTower R S (A i)]
[hinst : IsScalarTower R S (∀ i, A i)]
[∀ i, StarRing (A i)] [∀ i, TopologicalSpace (A i)] {p : (∀ i, A i) → Prop}
{q : (i : ι) → A i → Prop}
[ContinuousFunctionalCalculus R (∀ i, A i) p]
[∀ i, ContinuousFunctionalCalculus R (A i) (q i)]
[∀ i, ContinuousMap.UniqueHom R (A i)]

include S in
lemma cfc_map_pi (f : R → R) (a : ∀ i, A i)
(hf : ContinuousOn f (⋃ i, spectrum R (a i)) := by cfc_cont_tac)
(ha : p a := by cfc_tac) (ha' : ∀ i, q i (a i) := by cfc_tac) :
cfc f a = fun i => cfc f (a i) := by
ext i
let φ := Pi.evalStarAlgHom S A i
exact φ.map_cfc f a (by rwa [Pi.spectrum_eq]) (continuous_apply i) ha (ha' i)

end unital_pi

section unital_prod

variable {A B R S : Type*} [CommSemiring R] [StarRing R] [MetricSpace R]
[IsTopologicalSemiring R] [ContinuousStar R] [CommRing S] [Algebra R S]
[Ring A] [Ring B] [Algebra S A] [Algebra S B] [Algebra R A] [Algebra R B]
[IsScalarTower R S A] [IsScalarTower R S B]
[StarRing A] [StarRing B] [TopologicalSpace A] [TopologicalSpace B] {pab : A × B → Prop}
{pa : A → Prop} {pb : B → Prop}
[ContinuousFunctionalCalculus R (A × B) pab]
[ContinuousFunctionalCalculus R A pa] [ContinuousFunctionalCalculus R B pb]
[ContinuousMap.UniqueHom R A] [ContinuousMap.UniqueHom R B]

include S in
lemma cfc_map_prod (f : R → R) (a : A) (b : B)
(hf : ContinuousOn f (spectrum R a ∪ spectrum R b) := by cfc_cont_tac)
(hab : pab (a, b) := by cfc_tac) (ha : pa a := by cfc_tac) (hb : pb b := by cfc_tac) :
cfc f (a, b) = (cfc f a, cfc f b) := by
ext
case fst =>
let φ := StarAlgHom.fst S A B
exact φ.map_cfc f (a, b) (by rwa [Prod.spectrum_eq]) continuous_fst hab ha
case snd =>
let φ := StarAlgHom.snd S A B
exact φ.map_cfc f (a, b) (by rwa [Prod.spectrum_eq]) continuous_snd hab hb

end unital_prod
Loading