-
Notifications
You must be signed in to change notification settings - Fork 370
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
refactor(AlgebraicTopology/SimplicialSet): 0-truncated paths #21331
base: master
Are you sure you want to change the base?
Conversation
exp: extend spine definition exp: between two impls exp: one-truncated SSet.Path exp: get StrictSegal working exp: small diff in Coskeletal.lean feat: Path.mk and StrictSegal.mk fix: proofs in SimplicialSet/Coskeletal.lean chore: cleanup
PR summary 53dc574c96
|
File | Base Count | Head Count | Change |
---|---|---|---|
Mathlib.AlgebraicTopology.SimplexCategory | 818 | 819 | +1 (+0.12%) |
Mathlib.AlgebraicTopology.SimplicialObject.Basic | 833 | 834 | +1 (+0.12%) |
Mathlib.AlgebraicTopology.SimplicialSet.Basic | 834 | 835 | +1 (+0.12%) |
Mathlib.AlgebraicTopology.SimplicialSet.Path | 843 | 844 | +1 (+0.12%) |
Mathlib.AlgebraicTopology.SimplicialSet.StrictSegal | 849 | 850 | +1 (+0.12%) |
Mathlib.AlgebraicTopology.SimplicialSet.Coskeletal | 851 | 852 | +1 (+0.12%) |
Mathlib.AlgebraicTopology.Quasicategory.StrictSegal | 852 | 853 | +1 (+0.12%) |
Mathlib.AlgebraicTopology.Quasicategory.Nerve | 853 | 854 | +1 (+0.12%) |
Mathlib.AlgebraicTopology.SimplicialSet.HomotopyCat | 857 | 858 | +1 (+0.12%) |
Import changes for all files
Files | Import difference |
---|---|
50 filesMathlib.AlgebraicTopology.AlternatingFaceMapComplex Mathlib.AlgebraicTopology.CechNerve Mathlib.AlgebraicTopology.DoldKan.Decomposition Mathlib.AlgebraicTopology.DoldKan.Degeneracies Mathlib.AlgebraicTopology.DoldKan.EquivalenceAdditive Mathlib.AlgebraicTopology.DoldKan.EquivalencePseudoabelian Mathlib.AlgebraicTopology.DoldKan.Equivalence Mathlib.AlgebraicTopology.DoldKan.Faces Mathlib.AlgebraicTopology.DoldKan.FunctorGamma Mathlib.AlgebraicTopology.DoldKan.FunctorN Mathlib.AlgebraicTopology.DoldKan.GammaCompN Mathlib.AlgebraicTopology.DoldKan.Homotopies Mathlib.AlgebraicTopology.DoldKan.HomotopyEquivalence Mathlib.AlgebraicTopology.DoldKan.NCompGamma Mathlib.AlgebraicTopology.DoldKan.NReflectsIso Mathlib.AlgebraicTopology.DoldKan.Normalized Mathlib.AlgebraicTopology.DoldKan.Notations Mathlib.AlgebraicTopology.DoldKan.PInfty Mathlib.AlgebraicTopology.DoldKan.Projections Mathlib.AlgebraicTopology.DoldKan.SplitSimplicialObject Mathlib.AlgebraicTopology.ExtraDegeneracy Mathlib.AlgebraicTopology.MooreComplex Mathlib.AlgebraicTopology.Quasicategory.Basic Mathlib.AlgebraicTopology.Quasicategory.Nerve Mathlib.AlgebraicTopology.Quasicategory.StrictSegal Mathlib.AlgebraicTopology.SimplexCategory Mathlib.AlgebraicTopology.SimplicialCategory.Basic Mathlib.AlgebraicTopology.SimplicialCategory.SimplicialObject Mathlib.AlgebraicTopology.SimplicialNerve Mathlib.AlgebraicTopology.SimplicialObject.Basic Mathlib.AlgebraicTopology.SimplicialObject.Coskeletal Mathlib.AlgebraicTopology.SimplicialObject.Split Mathlib.AlgebraicTopology.SimplicialSet.Basic Mathlib.AlgebraicTopology.SimplicialSet.Boundary Mathlib.AlgebraicTopology.SimplicialSet.Coskeletal Mathlib.AlgebraicTopology.SimplicialSet.HomotopyCat Mathlib.AlgebraicTopology.SimplicialSet.Horn Mathlib.AlgebraicTopology.SimplicialSet.KanComplex Mathlib.AlgebraicTopology.SimplicialSet.Monoidal Mathlib.AlgebraicTopology.SimplicialSet.Nerve Mathlib.AlgebraicTopology.SimplicialSet.Path Mathlib.AlgebraicTopology.SimplicialSet.StdSimplex Mathlib.AlgebraicTopology.SimplicialSet.StrictSegal Mathlib.AlgebraicTopology.SingularSet Mathlib.AlgebraicTopology.TopologicalSimplex Mathlib.CategoryTheory.Idempotents.SimplicialObject Mathlib.RepresentationTheory.GroupCohomology.Basic Mathlib.RepresentationTheory.GroupCohomology.Hilbert90 Mathlib.RepresentationTheory.GroupCohomology.LowDegree Mathlib.RepresentationTheory.GroupCohomology.Resolution |
1 |
Declarations diff
+ CategoryTheory.Nerve.strictSegal
+ Hom.tr
+ Hom.tr_comp
+ Meta.subscript
+ Path₀
+ Path₁
+ StrictSegalAux.of_zero
+ arrow_rec
+ ext
+ ext₀
+ ext₁
+ hasColimits
+ hasLimits
+ hom_ext
+ incl
+ incl_comp_inclusion
+ instance (C : Type u) [Category.{v} C] :
+ instance : Coe (((truncation 1).obj X).Path 0) (Path X 0)
+ instance {X : SSet.Truncated.{u} n} {m : ℕ} :
+ largeCategory
+ mk_arrow
+ mk_vertex
+ on
+ spineEquiv_coe_fn
+ spineEquiv_symm_coe_fn
+ spineToDiagonal_def
+ spine_arrow'
+ trunc_eq
+ trunc_self
+ trunc_spine
+ uliftFunctor
++ arrow
++ arrow_src
++ arrow_tgt
++ map_arrow
++ map_vertex
++ mk
++ spineToSimplex
++ spineToSimplex_spine
++ spineToSimplex_spine_apply
++ spine_arrow
++ spine_spineToSimplex
++ spine_spineToSimplex_apply
++ spine_vertex
++ vertex
+++ delabMkNotation
+++ ext'
+++ truncation_comp_trunc
++++ interval
++++ map
++++ trunc
++- Path
++- map_interval
++- spineInjective
++- spine_map_vertex
+-+ StrictSegal
+-+ spine
+-+ spineEquiv
+-+ spineToDiagonal
+-+ spineToSimplex_arrow
+-+ spineToSimplex_vertex
- Path.ext'
- Path.interval
- Path.map
- Truncated.hasColimits
- Truncated.hasLimits
- Truncated.hom_ext
- Truncated.largeCategory
- Truncated.uliftFunctor
- horn.spineId_map_hornInclusion
- spineToSimplex_map
- strictSegal
-++ spineToSimplex_edge
-++ spineToSimplex_interval
-++ spine_δ_arrow_eq
-++ spine_δ_arrow_gt
-++ spine_δ_arrow_lt
-++ spine_δ_vertex_ge
-++ spine_δ_vertex_lt
You can run this locally as follows
## summary with just the declaration names:
./scripts/declarations_diff.sh <optional_commit>
## more verbose report:
./scripts/declarations_diff.sh long <optional_commit>
The doc-module for script/declarations_diff.sh
contains some details about this script.
Increase in tech debt: (relative, absolute) = (1.00, 0.00)
Current number | Change | Type |
---|---|---|
1418 | 1 | erw |
Current commit 53dc574c96
Reference commit 773fd70b27
You can run this locally as
./scripts/technical-debt-metrics.sh pr_summary
- The
relative
value is the weighted sum of the differences with weight given by the inverse of the current value of the statistic. - The
absolute
value is therelative
value divided by the total sum of the inverses of the current values (i.e. the weighted average of the differences).
An experimental alternative to #20668.
The most notable difference here is that the vertices of a path in an
n
-truncated simplicial setX
live in the further 0-truncation ofX
, rather than the 1-truncation. The arrows are then 1-simplices in the further 1-truncation ofX
whose sources and targets can be identified with the respective vertices. This allows us to consider paths in 0-truncated simplicial sets (without arrows) as well as inn + 1
-truncated simplicial sets (with arrows).The diff is a mashup of several different PRs at this point, so the intrepid reviewer may prefer to just read through Path.lean.