Skip to content

[Merged by Bors] - refactor(Topology/Constructible): use QuasiSeparatedSpace #21325

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 3 commits into from
Closed
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 26 additions & 22 deletions Mathlib/Topology/Constructible.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Order.BooleanSubalgebra
import Mathlib.Topology.QuasiSeparated
import Mathlib.Topology.Spectral.Hom

/-!
Expand Down Expand Up @@ -296,10 +297,13 @@ variable [CompactSpace X] {P : ∀ s : Set X, IsConstructible s → Prop} {B : S
lemma _root_.IsRetrocompact.isCompact (hs : IsRetrocompact s) : IsCompact s := by
simpa using hs CompactSpace.isCompact_univ

variable [QuasiSeparatedSpace X]

/-- Variant of `TopologicalSpace.IsTopologicalBasis.isRetrocompact_iff_isCompact` for a
non-indexed topological basis. -/
@[stacks 0069 "Iff form of (2). Note that Stacks doesn't define quasi-separated spaces."]
lemma _root_.TopologicalSpace.IsTopologicalBasis.isRetrocompact_iff_isCompact'
(basis : IsTopologicalBasis B) (compact_inter : ∀ U ∈ B, ∀ V ∈ B, IsCompact (U ∩ V))
(basis : IsTopologicalBasis B) (isCompact_basis : ∀ U ∈ B, IsCompact U)
(hU : IsOpen U) : IsRetrocompact U ↔ IsCompact U := by
refine ⟨IsRetrocompact.isCompact, fun hU' {V} hV' hV ↦ ?_⟩
obtain ⟨s, rfl⟩ := eq_sUnion_finset_of_isTopologicalBasis_of_isCompact_open _ basis _ hU' hU
Expand All @@ -308,43 +312,44 @@ lemma _root_.TopologicalSpace.IsTopologicalBasis.isRetrocompact_iff_isCompact'
refine ((s.finite_toSet.image _).prod (t.finite_toSet.image _)).isCompact_biUnion ?_
simp only [mem_prod, mem_image, Finset.mem_coe, Subtype.exists, exists_and_right, exists_eq_right,
and_imp, forall_exists_index, Prod.forall]
exact fun u v hu _ hv _ ↦ compact_inter _ hu _ hv
exact fun u v hu _ hv _ ↦ (isCompact_basis _ hu).inter_of_isOpen (isCompact_basis _ hv)
(basis.isOpen hu) (basis.isOpen hv)

@[stacks 0069 "Iff form of (2). Note that Stacks doesn't define quasi-separated spaces."]
lemma _root_.TopologicalSpace.IsTopologicalBasis.isRetrocompact_iff_isCompact
(basis : IsTopologicalBasis (range b)) (compact_inter : ∀ i j, IsCompact (b i ∩ b j))
(basis : IsTopologicalBasis (range b)) (isCompact_basis : ∀ i, IsCompact (b i))
(hU : IsOpen U) : IsRetrocompact U ↔ IsCompact U :=
basis.isRetrocompact_iff_isCompact' (by simpa using compact_inter) hU
basis.isRetrocompact_iff_isCompact' (by simpa using isCompact_basis) hU

/-- Variant of `TopologicalSpace.IsTopologicalBasis.isRetrocompact` for a non-indexed topological
basis. -/
lemma _root_.TopologicalSpace.IsTopologicalBasis.isRetrocompact' (basis : IsTopologicalBasis B)
(compact_inter : ∀ U ∈ B, ∀ V ∈ B, IsCompact (U ∩ V)) (hU : U ∈ B) : IsRetrocompact U :=
(basis.isRetrocompact_iff_isCompact' compact_inter <| basis.isOpen hU).2 <| by
simpa using compact_inter _ hU _ hU
(isCompact_basis : ∀ U ∈ B, IsCompact U) (hU : U ∈ B) : IsRetrocompact U :=
(basis.isRetrocompact_iff_isCompact' isCompact_basis <| basis.isOpen hU).2 <| isCompact_basis _ hU

lemma _root_.TopologicalSpace.IsTopologicalBasis.isRetrocompact
(basis : IsTopologicalBasis (range b)) (compact_inter : ∀ i j, IsCompact (b i ∩ b j)) (i : ι) :
(basis : IsTopologicalBasis (range b)) (isCompact_basis : ∀ i, IsCompact (b i)) (i : ι) :
IsRetrocompact (b i) :=
(basis.isRetrocompact_iff_isCompact compact_inter <| basis.isOpen <| mem_range_self _).2 <| by
simpa using compact_inter i i
(basis.isRetrocompact_iff_isCompact isCompact_basis <| basis.isOpen <| mem_range_self _).2 <|
isCompact_basis _

/-- Variant of `TopologicalSpace.IsTopologicalBasis.isConstructible` for a non-indexed topological
basis. -/
lemma _root_.TopologicalSpace.IsTopologicalBasis.isConstructible' (basis : IsTopologicalBasis B)
(compact_inter : ∀ U ∈ B, ∀ V ∈ B, IsCompact (U ∩ V)) (hU : U ∈ B) : IsConstructible U :=
(basis.isRetrocompact' compact_inter hU).isConstructible <| basis.isOpen hU
(isCompact_basis : ∀ U ∈ B, IsCompact U) (hU : U ∈ B) : IsConstructible U :=
(basis.isRetrocompact' isCompact_basis hU).isConstructible <| basis.isOpen hU

lemma _root_.TopologicalSpace.IsTopologicalBasis.isConstructible
(basis : IsTopologicalBasis (range b)) (compact_inter : ∀ i j, IsCompact (b i ∩ b j)) (i : ι) :
(basis : IsTopologicalBasis (range b)) (isCompact_basis : ∀ i, IsCompact (b i)) (i : ι) :
IsConstructible (b i) :=
(basis.isRetrocompact compact_inter _).isConstructible <| basis.isOpen <| mem_range_self _
(basis.isRetrocompact isCompact_basis _).isConstructible <| basis.isOpen <| mem_range_self _

@[elab_as_elim]
lemma IsConstructible.induction_of_isTopologicalBasis {ι : Type*} [Nonempty ι] (b : ι → Set X)
(basis : IsTopologicalBasis (range b)) (compact_inter : ∀ i j, IsCompact (b i ∩ b j))
(basis : IsTopologicalBasis (range b)) (isCompact_basis : ∀ i, IsCompact (b i))
(sdiff : ∀ i s (hs : Set.Finite s), P (b i \ ⋃ j ∈ s, b j)
((basis.isConstructible compact_inter _).sdiff <| .biUnion hs fun _ _ ↦
basis.isConstructible compact_inter _))
((basis.isConstructible isCompact_basis _).sdiff <| .biUnion hs fun _ _ ↦
basis.isConstructible isCompact_basis _))
(union : ∀ s hs t ht, P s hs → P t ht → P (s ∪ t) (hs.union ht))
(s : Set X) (hs : IsConstructible s) : P s hs := by
induction s, hs using BooleanSubalgebra.closure_sdiff_sup_induction with
Expand All @@ -354,8 +359,7 @@ lemma IsConstructible.induction_of_isTopologicalBasis {ι : Type*} [Nonempty ι]
| bot_mem => exact ⟨isOpen_empty, .empty⟩
| top_mem => exact ⟨isOpen_univ, .univ⟩
| sdiff U hU V hV =>
have := isCompact_open_iff_eq_finite_iUnion_of_isTopologicalBasis _ basis
fun i ↦ by simpa using compact_inter i i
have := isCompact_open_iff_eq_finite_iUnion_of_isTopologicalBasis _ basis isCompact_basis
obtain ⟨s, hs, rfl⟩ := (this _).1 ⟨hU.2.isCompact, hU.1⟩
obtain ⟨t, ht, rfl⟩ := (this _).1 ⟨hV.2.isCompact, hV.1⟩
simp_rw [iUnion_diff]
Expand All @@ -364,11 +368,11 @@ lemma IsConstructible.induction_of_isTopologicalBasis {ι : Type*} [Nonempty ι]
| @insert i s hi hs ih =>
simp_rw [biUnion_insert]
exact union _ _ _
(.biUnion hs fun i _ ↦ (basis.isConstructible compact_inter _).sdiff <|
.biUnion ht fun j _ ↦ basis.isConstructible compact_inter _)
(.biUnion hs fun i _ ↦ (basis.isConstructible isCompact_basis _).sdiff <|
.biUnion ht fun j _ ↦ basis.isConstructible isCompact_basis _)
(sdiff _ _ ht)
(ih ⟨isOpen_biUnion fun _ _ ↦ basis.isOpen ⟨_, rfl⟩, .biUnion hs
fun i _ ↦ basis.isRetrocompact compact_inter _⟩)
fun i _ ↦ basis.isRetrocompact isCompact_basis _⟩)
| sup s _ t _ hs' ht' => exact union _ _ _ _ hs' ht'

end CompactSpace
Expand Down
19 changes: 13 additions & 6 deletions Mathlib/Topology/QuasiSeparated.lean
Original file line number Diff line number Diff line change
Expand Up @@ -111,14 +111,21 @@ instance (priority := 100) NoetherianSpace.to_quasiSeparatedSpace [NoetherianSpa
QuasiSeparatedSpace α :=
⟨fun _ _ _ _ _ _ => NoetherianSpace.isCompact _⟩

theorem IsQuasiSeparated.of_quasiSeparatedSpace (s : Set α) [QuasiSeparatedSpace α] :
IsQuasiSeparated s :=
section QuasiSeparatedSpace
variable [QuasiSeparatedSpace α] {U V : Set α}

lemma IsQuasiSeparated.of_quasiSeparatedSpace (s : Set α) : IsQuasiSeparated s :=
isQuasiSeparated_univ.of_subset (Set.subset_univ _)

theorem QuasiSeparatedSpace.of_isOpenEmbedding (h : IsOpenEmbedding f) [QuasiSeparatedSpace β] :
QuasiSeparatedSpace α :=
isQuasiSeparated_univ_iff.mp
(h.isQuasiSeparated_iff.mpr <| IsQuasiSeparated.of_quasiSeparatedSpace _)
lemma QuasiSeparatedSpace.of_isOpenEmbedding {f : β → α} (h : IsOpenEmbedding f) :
QuasiSeparatedSpace β :=
isQuasiSeparated_univ_iff.mp (h.isQuasiSeparated_iff.mpr <| .of_quasiSeparatedSpace _)

@[deprecated (since := "2024-10-18")]
alias QuasiSeparatedSpace.of_openEmbedding := QuasiSeparatedSpace.of_isOpenEmbedding

lemma IsCompact.inter_of_isOpen (hUcomp : IsCompact U) (hVcomp : IsCompact V) (hUopen : IsOpen U)
(hVopen : IsOpen V) : IsCompact (U ∩ V) :=
QuasiSeparatedSpace.inter_isCompact _ _ hUopen hUcomp hVopen hVcomp

end QuasiSeparatedSpace