Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - Refactor(Analysis): from BilinForm to LinearMap.BilinForm #11097

Closed
wants to merge 5 commits into from
Closed
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Archive/Hairer.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ import Mathlib.Analysis.Analytic.Polynomial
import Mathlib.Analysis.Analytic.Uniqueness
import Mathlib.Analysis.Distribution.AEEqOfIntegralContDiff
import Mathlib.Data.MvPolynomial.Funext
import Mathlib.LinearAlgebra.Dual
import Mathlib.RingTheory.MvPolynomial.Basic
import Mathlib.Topology.Algebra.MvPolynomial

Expand Down
6 changes: 3 additions & 3 deletions Mathlib/Analysis/Fourier/RiemannLebesgueLemma.lean
Original file line number Diff line number Diff line change
Expand Up @@ -61,10 +61,10 @@ variable [NormedAddCommGroup V] [MeasurableSpace V] [BorelSpace V] [InnerProduct
/-- The integrand in the Riemann-Lebesgue lemma for `f` is integrable iff `f` is. -/
theorem fourier_integrand_integrable (w : V) :
Integrable f ↔ Integrable fun v : V => 𝐞[-⟪v, w⟫] • f v := by
have hL : Continuous fun p : V × V => BilinForm.toLin bilinFormOfRealInner p.1 p.2 :=
have hL : Continuous fun p : V × V => bilinFormOfRealInner p.1 p.2 :=
continuous_inner
rw [VectorFourier.fourier_integral_convergent_iff Real.continuous_fourierChar hL w]
simp only [BilinForm.toLin_apply, bilinFormOfRealInner_apply]
simp only [bilinFormOfRealInner_apply_apply, ofAdd_neg, map_inv, coe_inv_unitSphere]
#align fourier_integrand_integrable fourier_integrand_integrable

variable [CompleteSpace E]
Expand Down Expand Up @@ -234,7 +234,7 @@ theorem tendsto_integral_exp_inner_smul_cocompact :
← smul_sub, ← Pi.sub_apply]
exact
VectorFourier.norm_fourierIntegral_le_integral_norm 𝐞 volume
(BilinForm.toLin bilinFormOfRealInner) (f - g) w
(bilinFormOfRealInner) (f - g) w
replace := add_lt_add_of_le_of_lt this hI
rw [add_halves] at this
refine' ((le_of_eq _).trans (norm_add_le _ _)).trans_lt this
Expand Down
12 changes: 4 additions & 8 deletions Mathlib/Analysis/InnerProductSpace/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,6 @@ import Mathlib.Analysis.Complex.Basic
import Mathlib.Analysis.Convex.Uniform
import Mathlib.Analysis.NormedSpace.Completion
import Mathlib.Analysis.NormedSpace.BoundedLinearMaps
import Mathlib.LinearAlgebra.BilinearForm.Basic

#align_import analysis.inner_product_space.basic from "leanprover-community/mathlib"@"3f655f5297b030a87d641ad4e825af8d9679eb0b"

Expand Down Expand Up @@ -71,6 +70,8 @@ open IsROrC Real Filter

open BigOperators Topology ComplexConjugate

open LinearMap (BilinForm)

variable {𝕜 E F : Type*} [IsROrC 𝕜]

/-- Syntactic typeclass for types endowed with an inner product -/
Expand Down Expand Up @@ -499,13 +500,8 @@ def sesqFormOfInner : E →ₗ[𝕜] E →ₗ⋆[𝕜] 𝕜 :=
#align sesq_form_of_inner sesqFormOfInner

/-- The real inner product as a bilinear form. -/
mans0954 marked this conversation as resolved.
Show resolved Hide resolved
@[simps]
def bilinFormOfRealInner : BilinForm ℝ F where
bilin := inner
bilin_add_left := inner_add_left
bilin_smul_left _a _x _y := inner_smul_left _ _ _
bilin_add_right := inner_add_right
bilin_smul_right _a _x _y := inner_smul_right _ _ _
@[simps!]
def bilinFormOfRealInner : BilinForm ℝ F := sesqFormOfInner.flip
#align bilin_form_of_real_inner bilinFormOfRealInner

/-- An inner product with a sum on the left. -/
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Analysis/InnerProductSpace/Orthogonal.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.LinearAlgebra.BilinearForm.Orthogonal
import Mathlib.LinearAlgebra.SesquilinearForm

#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"

Expand Down Expand Up @@ -223,7 +223,7 @@ end Submodule

@[simp]
theorem bilinFormOfRealInner_orthogonal {E} [NormedAddCommGroup E] [InnerProductSpace ℝ E]
(K : Submodule ℝ E) : bilinFormOfRealInner.orthogonal K = Kᗮ :=
(K : Submodule ℝ E) : K.orthogonalBilin bilinFormOfRealInner = Kᗮ :=
rfl
#align bilin_form_of_real_inner_orthogonal bilinFormOfRealInner_orthogonal

Expand Down
Loading