Skip to content

[Merged by Bors] - feat: add proof of Jordan-Chevalley-Dunford decomposition #10295

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 11 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2471,6 +2471,7 @@ import Mathlib.LinearAlgebra.FreeModule.StrongRankCondition
import Mathlib.LinearAlgebra.GeneralLinearGroup
import Mathlib.LinearAlgebra.InvariantBasisNumber
import Mathlib.LinearAlgebra.Isomorphisms
import Mathlib.LinearAlgebra.JordanChevalley
import Mathlib.LinearAlgebra.Lagrange
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.LinearAlgebra.LinearPMap
Expand Down
5 changes: 5 additions & 0 deletions Mathlib/Algebra/Group/Units.lean
Original file line number Diff line number Diff line change
Expand Up @@ -674,6 +674,11 @@ theorem isUnit_of_mul_eq_one [CommMonoid M] (a b : M) (h : a * b = 1) : IsUnit a
#align is_unit_of_mul_eq_one isUnit_of_mul_eq_one
#align is_add_unit_of_add_eq_zero isAddUnit_of_add_eq_zero

@[to_additive]
theorem isUnit_of_mul_eq_one_right [CommMonoid M] (a b : M) (h : a * b = 1) : IsUnit b := by
rw [mul_comm] at h
exact isUnit_of_mul_eq_one b a h

section Monoid
variable [Monoid M] {a b : M}

Expand Down
22 changes: 22 additions & 0 deletions Mathlib/Data/Polynomial/AlgebraMap.lean
Original file line number Diff line number Diff line change
Expand Up @@ -304,6 +304,11 @@ theorem aeval_algHom_apply {F : Type*} [FunLike F A B] [AlgHomClass F R A B]
rw [map_add, hp, hq, ← map_add, ← map_add]
#align polynomial.aeval_alg_hom_apply Polynomial.aeval_algHom_apply

@[simp]
lemma coe_aeval_mk_apply {S : Subalgebra R A} (h : x ∈ S) :
(aeval (⟨x, h⟩ : S) p : A) = aeval x p :=
(aeval_algHom_apply S.val (⟨x, h⟩ : S) p).symm

theorem aeval_algEquiv (f : A ≃ₐ[R] B) (x : A) : aeval (f x) = (f : A →ₐ[R] B).comp (aeval x) :=
aeval_algHom (f : A →ₐ[R] B) x
#align polynomial.aeval_alg_equiv Polynomial.aeval_algEquiv
Expand Down Expand Up @@ -365,6 +370,23 @@ theorem _root_.Algebra.adjoin_singleton_eq_range_aeval (x : A) :
rw [← Algebra.map_top, ← adjoin_X, AlgHom.map_adjoin, Set.image_singleton, aeval_X]
#align algebra.adjoin_singleton_eq_range_aeval Algebra.adjoin_singleton_eq_range_aeval

@[simp]
theorem aeval_mem_adjoin_singleton :
aeval x p ∈ Algebra.adjoin R {x} := by
simpa only [Algebra.adjoin_singleton_eq_range_aeval] using Set.mem_range_self p

instance instCommSemiringAdjoinSingleton :
CommSemiring <| Algebra.adjoin R {x} :=
{ mul_comm := fun ⟨p, hp⟩ ⟨q, hq⟩ ↦ by
obtain ⟨p', rfl⟩ := Algebra.adjoin_singleton_eq_range_aeval R x ▸ hp
obtain ⟨q', rfl⟩ := Algebra.adjoin_singleton_eq_range_aeval R x ▸ hq
simp only [AlgHom.toRingHom_eq_coe, RingHom.coe_coe, Submonoid.mk_mul_mk, ← AlgHom.map_mul,
mul_comm p' q'] }

instance instCommRingAdjoinSingleton {R A : Type*} [CommRing R] [Ring A] [Algebra R A] (x : A) :
CommRing <| Algebra.adjoin R {x} :=
{ mul_comm := mul_comm }

variable {R}

section Semiring
Expand Down
79 changes: 79 additions & 0 deletions Mathlib/LinearAlgebra/JordanChevalley.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
/-
Copyright (c) 2024 Oliver Nash. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Oliver Nash
-/
import Mathlib.Algebra.Squarefree.UniqueFactorizationDomain
import Mathlib.Dynamics.Newton
import Mathlib.FieldTheory.Perfect
import Mathlib.LinearAlgebra.Semisimple

/-!
# Jordan-Chevalley-Dunford decomposition

Given a finite-dimensional linear endomorphism `f`, the Jordan-Chevalley-Dunford theorem provides a
sufficient condition for there to exist a nilpotent endomorphism `n` and a semisimple endomorphism
`s`, such that `f = n + s` and both `n` and `s` are polynomial expressions in `f`.

The condition is that there exists a separable polynomial `P` such that the endomorphism `P(f)` is
nilpotent. This condition is always satisfied when the coefficients are a perfect field.

The proof given here uses Newton's method and is taken from Chambert-Loir's notes:
[Algebre](http://webusers.imj-prg.fr/~antoine.chambert-loir/enseignement/2022-23/agreg/algebre.pdf)

## Main definitions / results:

* `Module.End.exists_isNilpotent_isSemisimple`: an endomorphism of a finite-dimensional vector
space over a perfect field may be written as a sum of nilpotent and semisimple endomorphisms.
Moreover these nilpotent and semisimple components are polynomial expressions in the original
endomorphism.

## TODO

* Uniqueness of decomposition (once we prove that the sum of commuting semisimple endomorphims is
semisimple, this will follow from `Module.End.eq_zero_of_isNilpotent_isSemisimple`).

-/

open Algebra Polynomial

namespace Module.End

variable {K V : Type*} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : End K V}

theorem exists_isNilpotent_isSemisimple_of_separable_of_dvd_pow {P : K[X]} {k : ℕ}
(sep : P.Separable) (nil : minpoly K f ∣ P ^ k) :
∃ᵉ (n ∈ adjoin K {f}) (s ∈ adjoin K {f}), IsNilpotent n ∧ IsSemisimple s ∧ f = n + s := by
set ff : adjoin K {f} := ⟨f, self_mem_adjoin_singleton K f⟩
set P' := derivative P
have nil' : IsNilpotent (aeval ff P) := by
use k
obtain ⟨q, hq⟩ := nil
rw [← AlgHom.map_pow, Subtype.ext_iff]
simp [hq]
have sep' : IsUnit (aeval ff P') := by
obtain ⟨a, b, h⟩ : IsCoprime (P ^ k) P' := sep.pow_left
replace h : (aeval f b) * (aeval f P') = 1 := by
simpa only [map_add, map_mul, map_one, minpoly.dvd_iff.mp nil, mul_zero, zero_add]
using (aeval f).congr_arg h
refine isUnit_of_mul_eq_one_right (aeval ff b) _ (Subtype.ext_iff.mpr ?_)
simpa [coe_aeval_mk_apply] using h
obtain ⟨⟨s, mem⟩, ⟨⟨k, hk⟩, hss⟩, -⟩ := exists_unique_nilpotent_sub_and_aeval_eq_zero nil' sep'
refine ⟨f - s, ?_, s, mem, ⟨k, ?_⟩, ?_, (sub_add_cancel f s).symm⟩
· exact sub_mem (self_mem_adjoin_singleton K f) mem
· rw [Subtype.ext_iff] at hk
simpa using hk
· replace hss : aeval s P = 0 := by rwa [Subtype.ext_iff, coe_aeval_mk_apply] at hss
exact isSemisimple_of_squarefree_aeval_eq_zero sep.squarefree hss

/-- **Jordan-Chevalley-Dunford decomposition**: an endomorphism of a finite-dimensional vector space
over a perfect field may be written as a sum of nilpotent and semisimple endomorphisms. Moreover
these nilpotent and semisimple components are polynomial expressions in the original endomorphism.
-/
theorem exists_isNilpotent_isSemisimple [PerfectField K] :
∃ᵉ (n ∈ adjoin K {f}) (s ∈ adjoin K {f}), IsNilpotent n ∧ IsSemisimple s ∧ f = n + s := by
obtain ⟨g, k, sep, -, nil⟩ := exists_squarefree_dvd_pow_of_ne_zero (minpoly.ne_zero_of_finite K f)
rw [← PerfectField.separable_iff_squarefree] at sep
exact exists_isNilpotent_isSemisimple_of_separable_of_dvd_pow sep nil

end Module.End
2 changes: 1 addition & 1 deletion docs/undergrad.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ Linear algebra:
invariant subspaces of an endomorphism: 'https://en.wikipedia.org/wiki/Invariant_subspace'
generalized eigenspaces: 'Module.End.generalizedEigenspace'
kernels lemma: 'https://fr.wikipedia.org/wiki/Lemme_des_noyaux'
Jordan-Chevalley-Dunford decomposition: 'https://en.wikipedia.org/wiki/Jordan%E2%80%93Chevalley_decomposition'
Jordan-Chevalley-Dunford decomposition: 'Module.End.exists_isNilpotent_isSemisimple'
Jordan normal form: 'https://en.wikipedia.org/wiki/Jordan_normal_form'
Linear representations:
irreducible representation: 'https://en.wikipedia.org/wiki/Irreducible_representation'
Expand Down