Skip to content

Commit

Permalink
Fix the use of the upstreamed theorem
Browse files Browse the repository at this point in the history
  • Loading branch information
Julian committed Feb 2, 2025
1 parent 4aa075f commit ddd91d1
Showing 1 changed file with 2 additions and 7 deletions.
9 changes: 2 additions & 7 deletions Mathlib/RingTheory/DedekindDomain/Factorial.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,14 +3,14 @@ Copyright (c) 2024 Julian Berman. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Julian Berman
-/
import Mathlib.Algebra.ModEq
import Mathlib.Algebra.MonoidAlgebra.Ideal
import Mathlib.Data.Nat.Factorial.BigOperators
import Mathlib.Data.Nat.Prime.Defs
import Mathlib.LinearAlgebra.FreeModule.PID
import Mathlib.RingTheory.DedekindDomain.Ideal
import Mathlib.RingTheory.Multiplicity
import Mathlib.RingTheory.Polynomial.Content
import Mathlib
/-!
# The generalized factorial function over subsets of a Dedekind Domain
Expand Down Expand Up @@ -80,11 +80,6 @@ structure Set.pOrdering where

instance : CoeFun (S.pOrdering p) (fun _ ↦ ℕ → R) := ⟨fun ν k ↦ ν.elems k |>.val⟩

example : emultiplicity 3 18 = 2 := by
erw [emultiplicity_eq_coe]
decide


/-- The associated p-sequence for a p-ordering.
Technically in the paper, this sequence is defined to be the powers, rather than the exponents
Expand Down Expand Up @@ -125,7 +120,7 @@ def natPOrdering : (univ : Set ℤ).pOrdering p where
simp at hx
omega
conv_rhs => rw [← Finset.prod_range_reflect, prod_cast]
obtain ⟨a, ha⟩ := factorial_coe_dvd_prod k (s - ↑(k - 1))
obtain ⟨a, ha⟩ := k.factorial_coe_dvd_prod (s - ↑(k - 1))
have fac_range := k.descFactorial_eq_prod_range k
zify at fac_range
have sub_cast: ∏ i ∈ Finset.range k, ↑(k - i) = ∏ i ∈ Finset.range k, ((k : ℤ) - (i : ℤ)) := by
Expand Down

0 comments on commit ddd91d1

Please sign in to comment.