-
Notifications
You must be signed in to change notification settings - Fork 380
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(LinearAlgebra/CliffordAlgebra): port SpinGroup (#9111)
In this PR, we define `lipschitzGroup`, `pinGroup` and `spinGroup`, and prove some basic lemmas. Ported from leanprover-community/mathlib3/pull/16040. Co-authored-by: Jiale Miao <[email protected]> Co-authored-by: Eric Wieser <[email protected]> Co-authored-by: utensil <[email protected]> Co-authored-by: Utensil <[email protected]>
1 parent
e9f0599
commit 1e7524a
Showing
3 changed files
with
419 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,411 @@ | ||
/- | ||
Copyright (c) 2022 Jiale Miao. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Jiale Miao, Utensil Song, Eric Wieser | ||
-/ | ||
import Mathlib.GroupTheory.GroupAction.ConjAct | ||
import Mathlib.Algebra.Star.Unitary | ||
import Mathlib.LinearAlgebra.CliffordAlgebra.Star | ||
import Mathlib.LinearAlgebra.CliffordAlgebra.Even | ||
import Mathlib.LinearAlgebra.CliffordAlgebra.Inversion | ||
|
||
/-! | ||
# The Pin group and the Spin group | ||
In this file we define `lipschitzGroup`, `pinGroup` and `spinGroup` and show they form a group. | ||
## Main definitions | ||
* `lipschitzGroup`: the Lipschitz group with a quadratic form. | ||
* `pinGroup`: the Pin group defined as the infimum of `lipschitzGroup` and `unitary`. | ||
* `spinGroup`: the Spin group defined as the infimum of `pinGroup` and `CliffordAlgebra.even`. | ||
## Implementation Notes | ||
The definition of the Lipschitz group | ||
$\{ x \in \mathop{\mathcal{C}\ell} | x \text{ is invertible and } x v x^{-1} ∈ V \}$ is given by: | ||
* [fulton2004][], Chapter 20 | ||
* https://en.wikipedia.org/wiki/Clifford_algebra#Lipschitz_group | ||
But they presumably form a group only in finite dimensions. So we define `lipschitzGroup` with | ||
closure of all the invertible elements in the form of `ι Q m`, and we show this definition is | ||
at least as large as the other definition (See `lipschitzGroup.conjAct_smul_range_ι` and | ||
`lipschitzGroup.involute_act_ι_mem_range_ι`). | ||
The reverse statement presumably is true only in finite dimensions. | ||
Here are some discussions about the latent ambiguity of definition : | ||
https://mathoverflow.net/q/427881/172242 and https://mathoverflow.net/q/251288/172242 | ||
## TODO | ||
Try to show the reverse statement is true in finite dimensions. | ||
-/ | ||
|
||
variable {R : Type*} [CommRing R] | ||
variable {M : Type*} [AddCommGroup M] [Module R M] | ||
variable {Q : QuadraticForm R M} | ||
|
||
section Pin | ||
|
||
open CliffordAlgebra MulAction | ||
|
||
open scoped Pointwise | ||
|
||
/-- `lipschitzGroup` is the subgroup closure of all the invertible elements in the form of `ι Q m` | ||
where `ι` is the canonical linear map `M →ₗ[R] CliffordAlgebra Q`. -/ | ||
def lipschitzGroup (Q : QuadraticForm R M) : Subgroup (CliffordAlgebra Q)ˣ := | ||
Subgroup.closure ((↑) ⁻¹' Set.range (ι Q) : Set (CliffordAlgebra Q)ˣ) | ||
|
||
namespace lipschitzGroup | ||
|
||
/-- The conjugation action by elements of the Lipschitz group keeps vectors as vectors. -/ | ||
theorem conjAct_smul_ι_mem_range_ι {x : (CliffordAlgebra Q)ˣ} (hx : x ∈ lipschitzGroup Q) | ||
[Invertible (2 : R)] (m : M) : | ||
ConjAct.toConjAct x • ι Q m ∈ LinearMap.range (ι Q) := by | ||
unfold lipschitzGroup at hx | ||
rw [ConjAct.units_smul_def, ConjAct.ofConjAct_toConjAct] | ||
induction hx using Subgroup.closure_induction'' generalizing m with | ||
| mem x hx => | ||
obtain ⟨a, ha⟩ := hx | ||
letI := x.invertible | ||
letI : Invertible (ι Q a) := by rwa [ha] | ||
letI : Invertible (Q a) := invertibleOfInvertibleι Q a | ||
simp_rw [← invOf_units x, ← ha, ι_mul_ι_mul_invOf_ι, LinearMap.mem_range_self] | ||
| inv_mem x hx => | ||
obtain ⟨a, ha⟩ := hx | ||
letI := x.invertible | ||
letI : Invertible (ι Q a) := by rwa [ha] | ||
letI : Invertible (Q a) := invertibleOfInvertibleι Q a | ||
letI := invertibleNeg (ι Q a) | ||
letI := Invertible.map involute (ι Q a) | ||
simp_rw [← invOf_units x, inv_inv, ← ha, invOf_ι_mul_ι_mul_ι, LinearMap.mem_range_self] | ||
| one => simp_rw [inv_one, Units.val_one, one_mul, mul_one, LinearMap.mem_range_self] | ||
| mul y z _ _ hy hz => | ||
simp_rw [mul_inv_rev, Units.val_mul] | ||
suffices ↑y * (↑z * ι Q m * ↑z⁻¹) * ↑y⁻¹ ∈ _ by | ||
simpa only [mul_assoc] using this | ||
obtain ⟨z', hz'⟩ := hz m | ||
obtain ⟨y', hy'⟩ := hy z' | ||
simp_rw [← hz', ← hy', LinearMap.mem_range_self] | ||
|
||
/-- This is another version of `lipschitzGroup.conjAct_smul_ι_mem_range_ι` which uses `involute`. -/ | ||
theorem involute_act_ι_mem_range_ι [Invertible (2 : R)] | ||
{x : (CliffordAlgebra Q)ˣ} (hx : x ∈ lipschitzGroup Q) (b : M) : | ||
involute (Q := Q) ↑x * ι Q b * ↑x⁻¹ ∈ LinearMap.range (ι Q) := by | ||
unfold lipschitzGroup at hx | ||
induction hx using Subgroup.closure_induction'' generalizing b with | ||
| mem x hx => | ||
obtain ⟨a, ha⟩ := hx | ||
letI := x.invertible | ||
letI : Invertible (ι Q a) := by rwa [ha] | ||
letI : Invertible (Q a) := invertibleOfInvertibleι Q a | ||
simp_rw [← invOf_units x, ← ha, involute_ι, neg_mul, ι_mul_ι_mul_invOf_ι Q a b, ← map_neg, | ||
LinearMap.mem_range_self] | ||
| inv_mem x hx => | ||
obtain ⟨a, ha⟩ := hx | ||
letI := x.invertible | ||
letI : Invertible (ι Q a) := by rwa [ha] | ||
letI : Invertible (Q a) := invertibleOfInvertibleι Q a | ||
letI := invertibleNeg (ι Q a) | ||
letI := Invertible.map involute (ι Q a) | ||
simp_rw [← invOf_units x, inv_inv, ← ha, map_invOf, involute_ι, invOf_neg, neg_mul, | ||
invOf_ι_mul_ι_mul_ι, ← map_neg, LinearMap.mem_range_self] | ||
| one => simp_rw [inv_one, Units.val_one, map_one, one_mul, mul_one, LinearMap.mem_range_self] | ||
| mul y z _ _ hy hz => | ||
simp_rw [mul_inv_rev, Units.val_mul, map_mul] | ||
suffices involute (Q := Q) ↑y * (involute (Q := Q) ↑z * ι Q b * ↑z⁻¹) * ↑y⁻¹ ∈ _ by | ||
simpa only [mul_assoc] using this | ||
obtain ⟨z', hz'⟩ := hz b | ||
obtain ⟨y', hy'⟩ := hy z' | ||
simp_rw [← hz', ← hy', LinearMap.mem_range_self] | ||
|
||
/-- If x is in `lipschitzGroup Q`, then `(ι Q).range` is closed under twisted conjugation. | ||
The reverse statement presumably is true only in finite dimensions.-/ | ||
theorem conjAct_smul_range_ι {x : (CliffordAlgebra Q)ˣ} (hx : x ∈ lipschitzGroup Q) | ||
[Invertible (2 : R)] : | ||
ConjAct.toConjAct x • LinearMap.range (ι Q) = LinearMap.range (ι Q) := by | ||
suffices ∀ x ∈ lipschitzGroup Q, | ||
ConjAct.toConjAct x • LinearMap.range (ι Q) ≤ LinearMap.range (ι Q) by | ||
apply le_antisymm | ||
· exact this _ hx | ||
· have := smul_mono_right (ConjAct.toConjAct x) <| this _ (inv_mem hx) | ||
refine Eq.trans_le ?_ this | ||
simp only [map_inv, smul_inv_smul] | ||
intro x hx | ||
erw [Submodule.map_le_iff_le_comap] | ||
rintro _ ⟨m, rfl⟩ | ||
exact conjAct_smul_ι_mem_range_ι hx _ | ||
|
||
theorem coe_mem_iff_mem {x : (CliffordAlgebra Q)ˣ} : | ||
↑x ∈ (lipschitzGroup Q).toSubmonoid.map (Units.coeHom <| CliffordAlgebra Q) ↔ | ||
x ∈ lipschitzGroup Q := by | ||
simp only [Submonoid.mem_map, Subgroup.mem_toSubmonoid, Units.coeHom_apply, exists_prop] | ||
norm_cast | ||
exact exists_eq_right | ||
|
||
end lipschitzGroup | ||
|
||
/-- `pinGroup Q` is defined as the infimum of `lipschitzGroup Q` and `unitary (CliffordAlgebra Q)`. | ||
See `mem_iff`. -/ | ||
def pinGroup (Q : QuadraticForm R M) : Submonoid (CliffordAlgebra Q) := | ||
(lipschitzGroup Q).toSubmonoid.map (Units.coeHom <| CliffordAlgebra Q) ⊓ unitary _ | ||
|
||
namespace pinGroup | ||
|
||
/-- An element is in `pinGroup Q` if and only if it is in `lipschitzGroup Q` and `unitary`. -/ | ||
theorem mem_iff {x : CliffordAlgebra Q} : | ||
x ∈ pinGroup Q ↔ | ||
x ∈ (lipschitzGroup Q).toSubmonoid.map (Units.coeHom <| CliffordAlgebra Q) ∧ | ||
x ∈ unitary (CliffordAlgebra Q) := | ||
Iff.rfl | ||
|
||
theorem mem_lipschitzGroup {x : CliffordAlgebra Q} (hx : x ∈ pinGroup Q) : | ||
x ∈ (lipschitzGroup Q).toSubmonoid.map (Units.coeHom <| CliffordAlgebra Q) := | ||
hx.1 | ||
|
||
theorem mem_unitary {x : CliffordAlgebra Q} (hx : x ∈ pinGroup Q) : | ||
x ∈ unitary (CliffordAlgebra Q) := | ||
hx.2 | ||
|
||
theorem units_mem_iff {x : (CliffordAlgebra Q)ˣ} : | ||
↑x ∈ pinGroup Q ↔ x ∈ lipschitzGroup Q ∧ ↑x ∈ unitary (CliffordAlgebra Q) := by | ||
rw [mem_iff, lipschitzGroup.coe_mem_iff_mem] | ||
|
||
theorem units_mem_lipschitzGroup {x : (CliffordAlgebra Q)ˣ} (hx : ↑x ∈ pinGroup Q) : | ||
x ∈ lipschitzGroup Q := | ||
(units_mem_iff.1 hx).1 | ||
|
||
/-- The conjugation action by elements of the spin group keeps vectors as vectors. -/ | ||
theorem conjAct_smul_ι_mem_range_ι {x : (CliffordAlgebra Q)ˣ} (hx : ↑x ∈ pinGroup Q) | ||
[Invertible (2 : R)] (y : M) : ConjAct.toConjAct x • ι Q y ∈ LinearMap.range (ι Q) := | ||
lipschitzGroup.conjAct_smul_ι_mem_range_ι (units_mem_lipschitzGroup hx) y | ||
|
||
/-- This is another version of `conjAct_smul_ι_mem_range_ι` which uses `involute`. -/ | ||
theorem involute_act_ι_mem_range_ι {x : (CliffordAlgebra Q)ˣ} (hx : ↑x ∈ pinGroup Q) | ||
[Invertible (2 : R)] (y : M) : involute (Q := Q) ↑x * ι Q y * ↑x⁻¹ ∈ LinearMap.range (ι Q) := | ||
lipschitzGroup.involute_act_ι_mem_range_ι (units_mem_lipschitzGroup hx) y | ||
|
||
/-- If x is in `pinGroup Q`, then `(ι Q).range` is closed under twisted conjugation. The reverse | ||
statement presumably being true only in finite dimensions.-/ | ||
theorem conjAct_smul_range_ι {x : (CliffordAlgebra Q)ˣ} (hx : ↑x ∈ pinGroup Q) | ||
[Invertible (2 : R)] : ConjAct.toConjAct x • LinearMap.range (ι Q) = LinearMap.range (ι Q) := | ||
lipschitzGroup.conjAct_smul_range_ι (units_mem_lipschitzGroup hx) | ||
|
||
@[simp] | ||
theorem star_mul_self_of_mem {x : CliffordAlgebra Q} (hx : x ∈ pinGroup Q) : star x * x = 1 := | ||
hx.2.1 | ||
|
||
@[simp] | ||
theorem mul_star_self_of_mem {x : CliffordAlgebra Q} (hx : x ∈ pinGroup Q) : x * star x = 1 := | ||
hx.2.2 | ||
|
||
/-- See `star_mem_iff` for both directions. -/ | ||
theorem star_mem {x : CliffordAlgebra Q} (hx : x ∈ pinGroup Q) : star x ∈ pinGroup Q := by | ||
rw [mem_iff] at hx ⊢ | ||
refine' ⟨_, unitary.star_mem hx.2⟩ | ||
rcases hx with ⟨⟨y, hy₁, hy₂⟩, _hx₂, hx₃⟩ | ||
simp only [Subgroup.coe_toSubmonoid, SetLike.mem_coe] at hy₁ | ||
simp only [Units.coeHom_apply] at hy₂ | ||
simp only [Submonoid.mem_map, Subgroup.mem_toSubmonoid, Units.coeHom_apply, exists_prop] | ||
refine' ⟨star y, _, by simp only [hy₂, Units.coe_star]⟩ | ||
rw [← hy₂] at hx₃ | ||
have hy₃ : y * star y = 1 := by | ||
rw [← Units.eq_iff] | ||
simp only [hx₃, Units.val_mul, Units.coe_star, Units.val_one] | ||
apply_fun fun x => y⁻¹ * x at hy₃ | ||
simp only [inv_mul_cancel_left, mul_one] at hy₃ | ||
simp only [hy₃, hy₁, inv_mem_iff] | ||
|
||
/-- An element is in `pinGroup Q` if and only if `star x` is in `pinGroup Q`. | ||
See `star_mem` for only one direction. -/ | ||
@[simp] | ||
theorem star_mem_iff {x : CliffordAlgebra Q} : star x ∈ pinGroup Q ↔ x ∈ pinGroup Q := by | ||
refine' ⟨_, star_mem⟩ | ||
intro hx | ||
convert star_mem hx | ||
exact (star_star x).symm | ||
|
||
instance : Star (pinGroup Q) where | ||
star x := ⟨star x, star_mem x.prop⟩ | ||
|
||
@[simp, norm_cast] | ||
theorem coe_star {x : pinGroup Q} : ↑(star x) = (star x : CliffordAlgebra Q) := | ||
rfl | ||
|
||
theorem coe_star_mul_self (x : pinGroup Q) : (star x : CliffordAlgebra Q) * x = 1 := | ||
star_mul_self_of_mem x.prop | ||
|
||
theorem coe_mul_star_self (x : pinGroup Q) : (x : CliffordAlgebra Q) * star x = 1 := | ||
mul_star_self_of_mem x.prop | ||
|
||
@[simp] | ||
theorem star_mul_self (x : pinGroup Q) : star x * x = 1 := | ||
Subtype.ext <| coe_star_mul_self x | ||
|
||
@[simp] | ||
theorem mul_star_self (x : pinGroup Q) : x * star x = 1 := | ||
Subtype.ext <| coe_mul_star_self x | ||
|
||
/-- `pinGroup Q` forms a group where the inverse is `star`. -/ | ||
instance : Group (pinGroup Q) where | ||
inv := star | ||
mul_left_inv := star_mul_self | ||
|
||
instance : StarMul (pinGroup Q) where | ||
star_involutive _ := Subtype.ext <| star_involutive _ | ||
star_mul _ _ := Subtype.ext <| star_mul _ _ | ||
|
||
instance : Inhabited (pinGroup Q) := | ||
⟨1⟩ | ||
|
||
theorem star_eq_inv (x : pinGroup Q) : star x = x⁻¹ := | ||
rfl | ||
|
||
theorem star_eq_inv' : (star : pinGroup Q → pinGroup Q) = Inv.inv := | ||
rfl | ||
|
||
/-- The elements in `pinGroup Q` embed into (CliffordAlgebra Q)ˣ. -/ | ||
@[simps] | ||
def toUnits : pinGroup Q →* (CliffordAlgebra Q)ˣ where | ||
toFun x := ⟨x, ↑x⁻¹, coe_mul_star_self x, coe_star_mul_self x⟩ | ||
map_one' := Units.ext rfl | ||
map_mul' _x _y := Units.ext rfl | ||
|
||
theorem toUnits_injective : Function.Injective (toUnits : pinGroup Q → (CliffordAlgebra Q)ˣ) := | ||
fun _x _y h => Subtype.ext <| Units.ext_iff.mp h | ||
|
||
end pinGroup | ||
|
||
end Pin | ||
|
||
section Spin | ||
|
||
open CliffordAlgebra MulAction | ||
|
||
open scoped Pointwise | ||
|
||
/-- `spinGroup Q` is defined as the infimum of `pinGroup Q` and `CliffordAlgebra.even Q`. | ||
See `mem_iff`. -/ | ||
def spinGroup (Q : QuadraticForm R M) : Submonoid (CliffordAlgebra Q) := | ||
pinGroup Q ⊓ (CliffordAlgebra.even Q).toSubring.toSubmonoid | ||
|
||
namespace spinGroup | ||
|
||
/-- An element is in `spinGroup Q` if and only if it is in `pinGroup Q` and `even Q`. -/ | ||
theorem mem_iff {x : CliffordAlgebra Q} : x ∈ spinGroup Q ↔ x ∈ pinGroup Q ∧ x ∈ even Q := | ||
Iff.rfl | ||
|
||
theorem mem_pin {x : CliffordAlgebra Q} (hx : x ∈ spinGroup Q) : x ∈ pinGroup Q := | ||
hx.1 | ||
|
||
theorem mem_even {x : CliffordAlgebra Q} (hx : x ∈ spinGroup Q) : x ∈ even Q := | ||
hx.2 | ||
|
||
theorem units_mem_lipschitzGroup {x : (CliffordAlgebra Q)ˣ} (hx : ↑x ∈ spinGroup Q) : | ||
x ∈ lipschitzGroup Q := | ||
pinGroup.units_mem_lipschitzGroup (mem_pin hx) | ||
|
||
/-- If x is in `spinGroup Q`, then `involute x` is equal to x.-/ | ||
theorem involute_eq {x : CliffordAlgebra Q} (hx : x ∈ spinGroup Q) : involute x = x := | ||
involute_eq_of_mem_even (mem_even hx) | ||
|
||
theorem units_involute_act_eq_conjAct {x : (CliffordAlgebra Q)ˣ} (hx : ↑x ∈ spinGroup Q) (y : M) : | ||
involute (Q := Q) ↑x * ι Q y * ↑x⁻¹ = ConjAct.toConjAct x • (ι Q y) := by | ||
rw [involute_eq hx, @ConjAct.units_smul_def, @ConjAct.ofConjAct_toConjAct] | ||
|
||
/-- The conjugation action by elements of the spin group keeps vectors as vectors. -/ | ||
theorem conjAct_smul_ι_mem_range_ι {x : (CliffordAlgebra Q)ˣ} (hx : ↑x ∈ spinGroup Q) | ||
[Invertible (2 : R)] (y : M) : ConjAct.toConjAct x • ι Q y ∈ LinearMap.range (ι Q) := | ||
lipschitzGroup.conjAct_smul_ι_mem_range_ι (units_mem_lipschitzGroup hx) y | ||
|
||
/- This is another version of `conjAct_smul_ι_mem_range_ι` which uses `involute`.-/ | ||
theorem involute_act_ι_mem_range_ι {x : (CliffordAlgebra Q)ˣ} (hx : ↑x ∈ spinGroup Q) | ||
[Invertible (2 : R)] (y : M) : involute (Q := Q) ↑x * ι Q y * ↑x⁻¹ ∈ LinearMap.range (ι Q) := | ||
lipschitzGroup.involute_act_ι_mem_range_ι (units_mem_lipschitzGroup hx) y | ||
|
||
/- If x is in `spinGroup Q`, then `(ι Q).range` is closed under twisted conjugation. The reverse | ||
statement presumably being true only in finite dimensions.-/ | ||
theorem conjAct_smul_range_ι {x : (CliffordAlgebra Q)ˣ} (hx : ↑x ∈ spinGroup Q) | ||
[Invertible (2 : R)] : ConjAct.toConjAct x • LinearMap.range (ι Q) = LinearMap.range (ι Q) := | ||
lipschitzGroup.conjAct_smul_range_ι (units_mem_lipschitzGroup hx) | ||
|
||
@[simp] | ||
theorem star_mul_self_of_mem {x : CliffordAlgebra Q} (hx : x ∈ spinGroup Q) : star x * x = 1 := | ||
hx.1.2.1 | ||
|
||
@[simp] | ||
theorem mul_star_self_of_mem {x : CliffordAlgebra Q} (hx : x ∈ spinGroup Q) : x * star x = 1 := | ||
hx.1.2.2 | ||
|
||
/-- See `star_mem_iff` for both directions. -/ | ||
theorem star_mem {x : CliffordAlgebra Q} (hx : x ∈ spinGroup Q) : star x ∈ spinGroup Q := by | ||
rw [mem_iff] at hx ⊢ | ||
cases' hx with hx₁ hx₂ | ||
refine' ⟨pinGroup.star_mem hx₁, _⟩ | ||
dsimp only [CliffordAlgebra.even] at hx₂ ⊢ | ||
simp only [Submodule.mem_toSubalgebra] at hx₂ ⊢ | ||
simp only [star_def, reverse_mem_evenOdd_iff, involute_mem_evenOdd_iff, hx₂] | ||
|
||
/-- An element is in `spinGroup Q` if and only if `star x` is in `spinGroup Q`. | ||
See `star_mem` for only one direction. | ||
-/ | ||
@[simp] | ||
theorem star_mem_iff {x : CliffordAlgebra Q} : star x ∈ spinGroup Q ↔ x ∈ spinGroup Q := by | ||
refine' ⟨_, star_mem⟩ | ||
intro hx | ||
convert star_mem hx | ||
exact (star_star x).symm | ||
|
||
instance : Star (spinGroup Q) where | ||
star x := ⟨star x, star_mem x.prop⟩ | ||
|
||
@[simp, norm_cast] | ||
theorem coe_star {x : spinGroup Q} : ↑(star x) = (star x : CliffordAlgebra Q) := | ||
rfl | ||
|
||
theorem coe_star_mul_self (x : spinGroup Q) : (star x : CliffordAlgebra Q) * x = 1 := | ||
star_mul_self_of_mem x.prop | ||
|
||
theorem coe_mul_star_self (x : spinGroup Q) : (x : CliffordAlgebra Q) * star x = 1 := | ||
mul_star_self_of_mem x.prop | ||
|
||
@[simp] | ||
theorem star_mul_self (x : spinGroup Q) : star x * x = 1 := | ||
Subtype.ext <| coe_star_mul_self x | ||
|
||
@[simp] | ||
theorem mul_star_self (x : spinGroup Q) : x * star x = 1 := | ||
Subtype.ext <| coe_mul_star_self x | ||
|
||
/-- `spinGroup Q` forms a group where the inverse is `star`. -/ | ||
instance : Group (spinGroup Q) where | ||
inv := star | ||
mul_left_inv := star_mul_self | ||
|
||
instance : StarMul (spinGroup Q) where | ||
star_involutive _ := Subtype.ext <| star_involutive _ | ||
star_mul _ _ := Subtype.ext <| star_mul _ _ | ||
|
||
instance : Inhabited (spinGroup Q) := | ||
⟨1⟩ | ||
|
||
theorem star_eq_inv (x : spinGroup Q) : star x = x⁻¹ := | ||
rfl | ||
|
||
theorem star_eq_inv' : (star : spinGroup Q → spinGroup Q) = Inv.inv := | ||
rfl | ||
|
||
/-- The elements in `spinGroup Q` embed into (CliffordAlgebra Q)ˣ. -/ | ||
@[simps] | ||
def toUnits : spinGroup Q →* (CliffordAlgebra Q)ˣ where | ||
toFun x := ⟨x, ↑x⁻¹, coe_mul_star_self x, coe_star_mul_self x⟩ | ||
map_one' := Units.ext rfl | ||
map_mul' _x _y := Units.ext rfl | ||
|
||
theorem toUnits_injective : Function.Injective (toUnits : spinGroup Q → (CliffordAlgebra Q)ˣ) := | ||
fun _x _y h => Subtype.ext <| Units.ext_iff.mp h | ||
|
||
end spinGroup | ||
|
||
end Spin |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters