Skip to content

Commit

Permalink
Axe the now-unneeded helper lemma.
Browse files Browse the repository at this point in the history
  • Loading branch information
Julian committed Feb 4, 2025
1 parent f4e723f commit 164ec3d
Showing 1 changed file with 1 addition and 9 deletions.
10 changes: 1 addition & 9 deletions Mathlib/Data/Nat/Factorial/BigOperators.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,8 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller, Pim Otte
-/
import Mathlib.Data.Nat.Factorial.Basic
import Mathlib.Algebra.BigOperators.Intervals
import Mathlib.Algebra.Order.BigOperators.Ring.Finset
import Mathlib.Tactic.Zify

/-!
# Factorial with big operators
Expand Down Expand Up @@ -42,14 +42,6 @@ theorem descFactorial_eq_prod_range (n : ℕ) : ∀ k, n.descFactorial k = ∏ i
| 0 => rfl
| k + 1 => by rw [descFactorial, prod_range_succ, mul_comm, descFactorial_eq_prod_range n k]

/-- `k!` divides the product of any `k` successive non-negative integers. -/
private lemma factorial_coe_dvd_prod_of_nonneg (k : ℕ) (n : ℤ) (hn : 0 ≤ n) :
(k ! : ℤ) ∣ ∏ i ∈ range k, (n + i) := by
obtain ⟨x, hx⟩ := Int.eq_ofNat_of_zero_le hn
have hdivk := x.factorial_dvd_ascFactorial k
zify [x.ascFactorial_eq_prod_range k] at hdivk
rwa [hx]

/-- `k!` divides the product of any `k` successive integers. -/
lemma factorial_coe_dvd_prod (k : ℕ) (n : ℤ) : (k ! : ℤ) ∣ ∏ i ∈ range k, (n + i) := by
rw [Int.dvd_iff_emod_eq_zero, Finset.prod_int_mod]
Expand Down

0 comments on commit 164ec3d

Please sign in to comment.