Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

Commit

Permalink
a sorry
Browse files Browse the repository at this point in the history
  • Loading branch information
eric-wieser committed Sep 10, 2023
1 parent 5c5402a commit 523e82e
Show file tree
Hide file tree
Showing 3 changed files with 7 additions and 5 deletions.
4 changes: 4 additions & 0 deletions src/algebra/algebra/basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -808,6 +808,10 @@ by rw [←(one_smul A m), ←smul_assoc, algebra.smul_def, mul_one, one_smul]
@[simp] lemma algebra_map_smul (r : R) (m : M) : ((algebra_map R A) r) • m = r • m :=
(algebra_compatible_smul A r m).symm

-- @[simp] lemma op_algebra_map_smul [module Rᵐᵒᵖ M] [module Aᵐᵒᵖ M] (r : R) (m : M) :
-- mul_opposite.op ((algebra_map R A) r) • m = mul_opposite.op r • m :=
-- by rw [←(one_smul Aᵐᵒᵖ m), ←smul_assoc, smul_eq_mul, mul_one]

lemma int_cast_smul {k V : Type*} [comm_ring k] [add_comm_group V] [module k V] (r : ℤ) (x : V) :
(r : k) • x = r • x :=
algebra_map_smul k r x
Expand Down
2 changes: 1 addition & 1 deletion src/algebra/algebra/restrict_scalars.lean
Original file line number Diff line number Diff line change
Expand Up @@ -172,7 +172,7 @@ lemma restrict_scalars.add_equiv_symm_map_smul_smul (r : R) (s : S) (x : M) :
= r • (restrict_scalars.add_equiv R S M ).symm (s • x) :=
by { rw [algebra.smul_def, mul_smul], refl, }

lemma restrict_scalars.lsmul_apply_apply[module Sᵐᵒᵖ M] [is_central_scalar S M]
lemma restrict_scalars.lsmul_apply_apply [module Sᵐᵒᵖ M] [is_central_scalar S M]
(s : S) (x : restrict_scalars R S M) :
restrict_scalars.lsmul R S M s x =
(restrict_scalars.add_equiv R S M).symm (s • (restrict_scalars.add_equiv R S M x)) :=
Expand Down
6 changes: 2 additions & 4 deletions src/algebra/triv_sq_zero_ext.lean
Original file line number Diff line number Diff line change
Expand Up @@ -586,21 +586,19 @@ instance algebra' : algebra S (tsze R M) :=
show r • x.2 = algebra_map S R r • x.2 + op x.10,
by rw [smul_zero, add_zero, algebra_map_smul],
op_smul_def' := λ x r, ext (algebra.op_smul_def _ _) $
show mul_opposite.op r • x.2 = x.10 + algebra_map S R r • x.2,
by rw [smul_zero, zero_add, op_smul_eq_smul, algebra_map_smul],
show mul_opposite.op r • x.2 = x.10 + mul_opposite.op (algebra_map S R r) • x.2,
by rw [smul_zero, zero_add, op_smul_eq_smul]; sorry,
.. (triv_sq_zero_ext.inl_hom R M).comp (algebra_map S R) }

lemma algebra_map_eq_inl' (s : S) : algebra_map S (tsze R M) s = inl (algebra_map S R s) := rfl

-- for the rest of this section we only care about the case when `R = S`
variables [module Rᵐᵒᵖ M] [is_central_scalar R M]

-- shortcut instance for the common case
instance : algebra R' (tsze R' M) := triv_sq_zero_ext.algebra' _ _ _

lemma algebra_map_eq_inl : ⇑(algebra_map R' (tsze R' M)) = inl := rfl
lemma algebra_map_eq_inl_hom : algebra_map R' (tsze R' M) = inl_hom R' M := rfl
lemma algebra_map_eq_inl' (s : S) : algebra_map S (tsze R M) s = inl (algebra_map S R s) := rfl

/-- The canonical `R`-algebra projection `triv_sq_zero_ext R M → R`. -/
@[simps]
Expand Down

0 comments on commit 523e82e

Please sign in to comment.