Skip to content

Commit

Permalink
Prove exists_alg_int
Browse files Browse the repository at this point in the history
  • Loading branch information
Ruben-VandeVelde committed Nov 16, 2023
1 parent 4a1e4ab commit 10f4f07
Show file tree
Hide file tree
Showing 2 changed files with 10 additions and 0 deletions.
4 changes: 4 additions & 0 deletions FltRegular/NumberTheory/KummersLemma.lean
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,10 @@ open scoped NumberField
variable {K : Type*} {p : ℕ+} [hpri : Fact p.Prime] [Field K] [NumberField K] [IsCyclotomicExtension {p} ℚ K]
variable (hp : p ≠ 2) [Fintype (ClassGroup (𝓞 K))] (hreg : (p : ℕ).Coprime <| Fintype.card <| ClassGroup (𝓞 K))

theorem exists_alg_int (α : K) : ∃ k : ℤ, k ≠ 0 ∧ IsAlgebraic ℤ (k • α) := by
obtain ⟨y, hy, h⟩ := exists_integral_multiples ℤ ℚ (L := K) {α}
exact ⟨y, hy, h α (Finset.mem_singleton_self _) |>.isAlgebraic⟩

theorem eq_pow_prime_of_unit_of_congruent (u : (𝓞 K)ˣ)
(hcong : ∃ n : ℤ, ↑p ∣ (↑u : 𝓞 K) - n) : ∃ v, u = v ^ (p : ℕ) :=
sorry
6 changes: 6 additions & 0 deletions blueprint/src/demo.tex
Original file line number Diff line number Diff line change
Expand Up @@ -406,8 +406,14 @@ \section{Kummer's Lemma}


\begin{lemma}\label{lem:exists_alg_int}
\lean{exists_alg_int}
\leanok
Let $K$ be a number fields and $\a \in K$. Then there exists a $n \in \ZZ\backslash\{0\}$ such that $n \a$ is an algebraic integer.
\end{lemma}
\begin{proof}
\leanok
See mathlib.
\end{proof}

\begin{theorem}[Hilbert 90]\label{Hilbert90}
Let $K/F$ be a Galois extension of number fields whose Galois group $\Gal(K/F)$ is cyclic with generator $\sigma$. If $\a \in K$ is such that $N_{K/F}(\a)=1$, then \[ \a =\beta/ \sigma(\beta)\] for some $\beta \in \OO_K$.
Expand Down

0 comments on commit 10f4f07

Please sign in to comment.