Skip to content

kurt-steiner/DataStructure.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

15ff510 · Sep 23, 2024

History

11 Commits
Feb 6, 2024
Sep 23, 2024
Sep 23, 2024
Feb 6, 2024
Feb 8, 2024
Mar 16, 2024

Repository files navigation

数据结构与算法

Graph

遍历

mutable struct BFSIterator{T}
    graph::AbstractGraph{T}
    start::Union{AdjList{T}, Nothing}
end

mutable struct DFSIterator{T}
    graph::AbstractGraph{T}
    start::Union{AdjList{T}, Nothing}
end

# 这里 nothing 表示默认将开始结点设置为领结表的第一个元素中的结点
BFSIterator(graph::AbstractGraph{T}, start::Union{AdjList{T}, Nothing}) where T = BFSIterator(graph, start)

DFSIterator(graph::AbstractGraph{T}, start::Union{AdjList{T}, Nothing}) where T = DFSIterator(graph, start)

@enum Color begin
    White
    Grey
    Black
end

mutable struct BFSState{T}
    queue::List{T}
    visited::Dict{T, Color}
end

mutable struct DFSState{T}
    stack::List{T}
    visited::Dict{T, Color}
end

广度优先遍历

  1. 首先创建一个 Dict{VertexType, Color} 映射集,并将所有结点的颜色设置为百色,表示未对其进行访问
  2. 创建一个队列 queue 来存放结点
  3. 选取一个开始结点 startVertex
  4. 提前将 startVertex 的颜色改为黑色,表示已经访问了该结点,并将其边结点放入了队列中
  5. 遍历 startVertex 的边结点,将他们插入到 queue
  6. queue 中提取出一个元素作为开始结点 vertex
  7. 若这个 vertex 结点的颜色不是黑色,那么遍历其边结点
    • 如果边结点的颜色是白色,那么将边结点插入到 queue
    • 并将其颜色设置为灰色,表示虽然访问过该结点,但是还没访问过其边结点
function iterate(iterator::BFSIterator{T}) where T
    state = BFSState{T}(List(T), Dict{T, Color}())

    if vertexCount(iterator.graph) == 0
        return nothing
    end

    for adjList in iterator.graph.adjLists
        vertex = adjList.vertex
        state.visited[vertex] = White
    end

    firstVertex = if isnothing(iterator.start)
        first(iterator.graph.adjLists).vertex
    else
        iterator.start.vertex
    end

    state.visited[firstVertex] = Black
    edges = findEdges(iterator.graph, firstVertex)

    for edge in edges
        push!(state.queue, edge.vertex)
        state.visited[edge.vertex] = Grey
    end

    return firstVertex, state
end

function iterate(iterator::BFSIterator{T}, state::BFSState{T}) where T
    isempty(state.queue) && return nothing

    vertex = popfirst!(state.queue)

    if state.visited[vertex] != Black
        edges = findEdges(iterator.graph, vertex)

        for edge in edges
            if state.visited[edge.vertex] == White
                push!(state.queue, edge.vertex)
                state.visited[edge.vertex] = Grey
            end
        end

        state.visited[vertex] = Black
    end

    return vertex, state
end

深度优先遍历

  1. 创建一个 Dict{VertexType, Color} 映射集,并将所有结点的颜色设置为白色,
  2. 创建一个栈 stack 来存放结点
  3. 选取一个开始结点 startVertex
  4. 提前将 startVertex 的颜色改为黑色,表示已访问了该结点,并将其边结点放入了栈中
  5. 遍历 startVertex 的边结点,将其颜色改为灰色,表示已访问该结点,但是还没有访问其边结点
  6. stack 中提取一个元素作为开始结点 vertex
  7. 遍历 vertex 的边结点,如果边结点的颜色为白色,那么插入边结点到 stack 中,并将其颜色设置为灰色
function iterate(iterator::DFSIterator{T}) where T
    state = DFSState{T}(List(T), Dict{T, Color}())

    if vertexCount(iterator.graph) == 0
        return nothing
    end

    firstVertex = if isnothing(iterator.start)
        first(iterator.graph.adjLists).vertex
    else
        iterator.start.vertex
    end

    for adjList in iterator.graph.adjLists
        vertex = adjList.vertex
        state.visited[vertex] = White
    end

    state.visited[firstVertex] = Black

    for edge in findEdges(iterator.graph, firstVertex)
        push!(state.stack, edge.vertex)
        state.visited[edge.vertex] = Grey
    end

    return firstVertex, state
end

function iterate(iterator::DFSIterator{T}, state::DFSState{T}) where T
    isempty(state.stack) && return nothing

    vertex = pop!(state.stack)

    for edge in findEdges(iterator.graph, vertex)
        if state.visited[edge.vertex] == White
            push!(state.stack, edge.vertex)
            state.visited[edge.vertex] = Grey
        end
    end

    return vertex, state
end

这里可以不用颜色来表示每个点的状态,用 Dict{VertexType, Bool} 也行的

最小生成树

kruskal 算法

kruskal 算法关注的是边,在我的算法实现里他首先定义了一个结构体来记录边的信息

@kwdef struct RecordItem{T}
    start::T
    endat::T
    weight::Number    
end

这个算法的思路是

  1. 遍历整个图 graph ,将所有边的信息汇集到一个数组 record
  2. 将这个数组以结构体中 weight 为关键字进行排序
  3. 创建一个空图 result 作为结果,将所有点插入到 result
  4. 在一个循环里对 result 插入边
    • 首先我们要确认,当 result.edgeCountgraph.vertexCount - 1 时,生成树已经创建完成,此时该退出循环
    • 如果插入边后图中有环,那么删除刚才插入的边
function kruskal(graph::AbstractGraph{T}, start::Union{T, Nothing} = nothing) where T
    startVertex = if isnothing(start)
        if graph.vertexCount == 0
            nothing
        else
            first(graph.adjLists).vertex
        end
    else
        findfirst(adjList -> adjList.vertex == start, graph.adjLists)
    end

    if isnothing(startVertex)
        throw(BadOperationException("cannot start from a non-exist vertex"))
    end

    record = RecordItem{T}[]
    visited = Dict{T, Color}()

    for adjList in graph.adjLists
        visited[adjList.vertex] = White
    end

    for adjList in graph.adjLists
        vertex = adjList.vertex

        if visited[vertex] == Black
            continue
        end
      
        edges = adjList.edges

        visited[vertex] = Grey

        start = vertex
      
        for edge in edges
            endat = edge.vertex
            visited[endat] = Grey

            push!(record, RecordItem(start = start, endat = endat, weight = edge.weight))
        end

        visited[vertex] = Black
    end

    sort!(record, by = item -> item.weight)

    result = if isa(graph, DirectedGraph)
        DirectedGraph(T)
    else
        UnDirectedGraph(T)
    end

    for adjList in graph.adjLists
        insertVertex!(result, adjList.vertex)
    end

    index = 1
    len = length(record)

    while result.edgeCount != graph.vertexCount - 1 && index <= len
        item = record[index]

        if !hasEdge(result, item.start, item.endat)
            insertEdge!(result, item.start, item.endat, item.weight)
        end

        if hasCycle(result)
            removeEdge!(result, item.start, item.endat)
        end

        index += 1
    end

    return result
end

prim 算法

prim 的核心是,将点集分为两个集合,在两个集合中找出最短的相邻的边,将边插入

  1. prim 算法在我的实现中需要两个辅助映射集
    • visisted::Dict{T, Bool} 表示结点是否访问过,将其看做划分点集的记录
    • parents::Dict{T, Union{T, Nothing}} 表示结点的父结点,如果是 nothing 则表示没有父结点
  2. 创建一个空图 result ,用来作为结果返回
  3. 遍历函数参数 graph ,我们只使用邻接表中的点
    • visited[adjList.vertex] = false
    • parents[adjList.vertex] = nothing
    • 将点插入到 result
  4. 选取一个起始点 startVertex ,将 startVertex 划分为已访问过的点集
  5. 在一个循环中
    • 直到所有结点已被访问才退出循环
    • 在所有未访问的点集和已访问的点集中寻找最小的权重边和对应的两个点,并设置对应的父子关系
    • 插入父结点和子结点对应的边,权重为最小权重边
    • 设置父结点已被访问过
function prim(graph::AbstractGraph{T}, start::Union{T, Nothing} = nothing) where T
    startVertex = if isnothing(start)
        if graph.vertexCount == 0
            nothing
        else
            first(graph.adjLists).vertex
        end
    else
        findfirst(adjList -> adjList.vertex == start, graph.adjLists)
    end

    if isnothing(startVertex)
        throw(BadOperationException("cannot start from a non-exist vertex"))
    end

    result::AbstractGraph{T} = if isa(graph, UnDirectedGraph) 
        UnDirectedGraph(T)
    else
        DirectedGraph(T)
    end

    # 标记点集,被标记的相当于加入了点集中    
    visited = Dict{T, Bool}()
    parents = Dict{T, Union{T, Nothing}}()
    for adjList in graph.adjLists
        visited[adjList.vertex] = false
        parents[adjList.vertex] = nothing
        insertVertex!(result, adjList.vertex)
    end

    visited[startVertex] = true
  
    while !all(values(visited))
        minVertex, minWeight = nothing, Inf
        # 所有未访问过的点集
        for adjList in graph.adjLists
            if visited[adjList.vertex]
                continue
            end

            for edge in adjList.edges
                # 未访问过的点集和已访问过的点集之间的边
                if visited[edge.vertex]
                    if minWeight > edge.weight
                        # minVertex, minWeight = edge.vertex, edge.weight
                        minVertex = edge.vertex
                        minWeight = edge.weight
                        parents[edge.vertex] = adjList.vertex
                    end
                end
            end

        end

        insertEdge!(result, parents[minVertex], minVertex, minWeight)
        visited[parents[minVertex]] = true
    end

    return result
end

最短路径

Dijkstra 算法

给定一个图 graph 一个起始点,可以得出这个点到每个点的距离,并附带每个结点的父结点

  1. 首先进行初始化
    • 给定一个记录起始点到其他结点的权重 distanceMap
    • 给定一个记录父结点的映射集 parents
    • 给定一个记录每个结点访问记录的 visited
    • 将每个结点的 distance 设置为 Inf
    • 将每个结点的 parent 设置为 nothing
    • 将每个结点的 visited 设置为 false
  2. 给定一个起始结点,将到其的权重设置为 0
  3. 在一个循环中
    • 当所有结点已被访问时,退出循环
    • 提取其结点未被访问过的邻接表,找出其中的点在 distanceMap 中最小的邻接表 minAdjList
    • 遍历 minAdjList 的边,比较
      1. 到这个边的距离 A
      2. 到最小点(最小邻接表)的距离 + 边的权重 B
      3. 如果 A > B ,那么将到边结点的距离设置为 B ,并将边结点的 parent 设置为最小结点
    • 将最小点设置为已访问过
mutable struct DijkstraShortestPath{T}
    graph::AbstractGraph{T}
    start::T
    distancesMap::Dict{T, Number}
    parents::Dict{T, Union{T, Nothing}}
    visited::Dict{T, Bool}
end


function DijkstraShortestPath(graph::AbstractGraph{T}, start::T) where T
    result = DijkstraShortestPath(graph, start, Dict{T, Number}(), Dict{T, Union{T, Nothing}}(), Dict{T, Bool}())

    distancesMap = result.distancesMap
    parents = result.parents
    graph = result.graph
    visited = result.visited

    for adjList in graph.adjLists
        distancesMap[adjList.vertex] = Inf
        parents[adjList.vertex] = nothing
        visited[adjList.vertex] = false
    end

    distancesMap[start] = 0

    while !all(values(visited))
        minAdjList = reduce(
            (left, right) -> distancesMap[left.vertex] < distancesMap[right.vertex] ? left : right,
            filter(adjList -> !visited[adjList.vertex], graph.adjLists)
        )

        minVertex = minAdjList.vertex
        edges = minAdjList.edges
        # visited[minVertex] = true

        for edge in edges
            value = distancesMap[minVertex] + edge.weight
            if distancesMap[edge.vertex] > value
                distancesMap[edge.vertex] = value
                parents[edge.vertex] = minVertex
            end
        end

        visited[minVertex] = true
      
    end

    return result
end

About

[Developing] 算法导论 Julia 实现,数据结构部分

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages