This repository contains references to Azure OpenAI, Large Language Models (LLM), and related services and libraries.
πΉBrief each item on a few lines as possible.
πΉThe dates are based on the first commit, article publication, or paper version 1 issuance.
πΉCapturing a chronicle and key terms of that rapidly advancing field.
πΉDisclaimer: Please be aware that some content may be outdated.
- Section 1 π―: RAG
- Section 2 π: Azure OpenAI
- Section 3 π: LLM Applications
- LLM Frameworks | Applications: incl. Code editor
- Caching, UX, Proposals & Other topics
- LLMs for Robotics
- Awesome demo
- Section 4 π€: Agent
- Agent Design Patterns
- Agent Frameworks | Applications: incl. Code Interpreter, Computer use, Deep research
- Section 5 ποΈ: Semantic Kernel & DSPy
- Semantic Kernel: Micro-orchestration
- DSPy: Optimizer frameworks
- Section 6 π οΈ: LangChain | LlamaIndex
- LangChain Features: Macro & Micro-orchestration
- LangChain Agent & Criticism
- LangChain vs Competitors
- LlamaIndex: Micro-orchestration & RAG
- Section 7 π§ : Prompting | Finetuning
- Prompt Engineering
- Finetuning: PEFT (e.g., LoRA), RLHF, SFT
- Quantization & Optimization
- Other Techniques: e.g., MoE
- Visual Prompting
- Section 8 πββοΈ: Challenges & Abilities
- Section 9 π: LLM Landscape
- LLM Taxonomy
- LLM Collection
- Domain-Specific LLMs: e.g., Software development
- Multimodal LLMs
- Section 10 π: Surveys & References
- Section 11 π§°: AI Tools & Extensions
- Section 12 π: Datasets
- Section 13 π: Evaluations
- Legend π:
ref
: external URLdoc
: archived doccite
: the source of commentscnt
: number of citationsgit
: GitHub linkx-ref
: Cross reference- πΊ: youtube or video
- π‘or π: recommendation
β https://github.com/kimtth
all rights reserved.