-
Notifications
You must be signed in to change notification settings - Fork 291
Add Phi-4 Backbone #2272
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
yrahul3910
wants to merge
11
commits into
keras-team:master
Choose a base branch
from
yrahul3910:master
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Add Phi-4 Backbone #2272
Changes from 3 commits
Commits
Show all changes
11 commits
Select commit
Hold shift + click to select a range
4a8566b
feat(phi4): add phi4_backbone
yrahul3910 69f66ff
docs(phi4): update defaults in docstring
yrahul3910 1bfe756
Merge branch 'keras-team:master' into master
yrahul3910 8b7146e
feat(phi4): refactor Phi4Backbone to inherit from Phi-3
yrahul3910 3df73af
feat(phi4): add phi-4 tokenizer
yrahul3910 4aceea3
feat(phi4): add phi-4 causal_lm files
yrahul3910 17a30ce
fix(phi4): update docstring to use correct variable names
yrahul3910 82b2912
fix(phi4): remove dedicated attention and decoder modules
yrahul3910 cbdf6ce
fix(phi4): remove unused layernorm and rotary embedding layers
yrahul3910 ce07951
fix(phi4): fix unit tests
yrahul3910 0d13049
fix(phi4): fix unit tests
yrahul3910 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
# TODO: Add a register_presets call once phi4_presets.py is implemented. |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,268 @@ | ||
import math | ||
|
||
import keras | ||
from keras import ops | ||
|
||
from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding | ||
from keras_hub.src.models.phi4.phi4_rotary_embedding import ( | ||
Phi4SuScaledRotaryEmbedding, | ||
) | ||
from keras_hub.src.utils.keras_utils import clone_initializer | ||
from keras_hub.src.utils.keras_utils import fused_attention_op_available | ||
|
||
|
||
class Phi4Attention(keras.layers.Layer): | ||
"""A cached grounded query attention layer.""" | ||
|
||
def __init__( | ||
self, | ||
num_query_heads=40, | ||
num_key_value_heads=10, | ||
kernel_initializer="glorot_uniform", | ||
dropout=0, | ||
max_sequence_length=16_384, | ||
pretraining_sequence_length=16_384, | ||
rope_max_wavelength=250_000, | ||
rope_scaling_type=None, | ||
rope_scaling_short_factor=None, | ||
rope_scaling_long_factor=None, | ||
**kwargs, | ||
): | ||
super().__init__(**kwargs) | ||
self.num_query_heads = num_query_heads | ||
self.num_key_value_heads = num_key_value_heads | ||
self.num_key_value_groups = num_query_heads // num_key_value_heads | ||
self.dropout = dropout | ||
|
||
self.max_sequence_length = max_sequence_length | ||
self.pretraining_sequence_length = pretraining_sequence_length | ||
self.rope_max_wavelength = rope_max_wavelength | ||
self.rope_scaling_type = rope_scaling_type | ||
self.rope_scaling_short_factor = rope_scaling_short_factor | ||
self.rope_scaling_long_factor = rope_scaling_long_factor | ||
|
||
self.kernel_initializer = keras.initializers.get( | ||
clone_initializer(kernel_initializer) | ||
) | ||
|
||
def build(self, inputs_shape): | ||
# Einsum variables: | ||
# b = batch size | ||
# q = query length | ||
# k = key/value length | ||
# m = model dim | ||
# u = num query heads | ||
# v = num key/value heads | ||
# h = head dim | ||
hidden_dim = inputs_shape[-1] | ||
head_dim = hidden_dim // self.num_query_heads | ||
self._inv_norm_factor = 1.0 / math.sqrt(head_dim) | ||
|
||
self.query_dense = keras.layers.EinsumDense( | ||
equation="bqm,muh->bquh", | ||
output_shape=(None, self.num_query_heads, head_dim), | ||
kernel_initializer=self.kernel_initializer, | ||
dtype=self.dtype_policy, | ||
name="query", | ||
) | ||
self.query_dense.build(inputs_shape) | ||
|
||
self.key_dense = keras.layers.EinsumDense( | ||
equation="bkm,mvh->bkvh", | ||
output_shape=( | ||
None, | ||
self.num_key_value_heads, | ||
head_dim, | ||
), | ||
kernel_initializer=self.kernel_initializer, | ||
dtype=self.dtype_policy, | ||
name="key", | ||
) | ||
self.key_dense.build(inputs_shape) | ||
|
||
self.value_dense = keras.layers.EinsumDense( | ||
equation="bkm,mvh->bkvh", | ||
output_shape=( | ||
None, | ||
self.num_key_value_heads, | ||
head_dim, | ||
), | ||
kernel_initializer=self.kernel_initializer, | ||
dtype=self.dtype_policy, | ||
name="value", | ||
) | ||
self.value_dense.build(inputs_shape) | ||
|
||
self.softmax = keras.layers.Softmax( | ||
axis=-1, | ||
dtype="float32", | ||
name="attention_softmax", | ||
) | ||
|
||
self.dropout_layer = keras.layers.Dropout( | ||
rate=self.dropout, | ||
dtype=self.dtype_policy, | ||
) | ||
|
||
self.output_dense = keras.layers.EinsumDense( | ||
equation="bquh,uhm->bqm", | ||
output_shape=(None, hidden_dim), | ||
kernel_initializer=self.kernel_initializer, | ||
dtype=self.dtype_policy, | ||
name="attention_output", | ||
) | ||
self.output_dense.build((None, None, self.num_query_heads, head_dim)) | ||
|
||
if self.rope_scaling_type is None: | ||
self.rotary_embedding_layer = RotaryEmbedding( | ||
max_wavelength=self.rope_max_wavelength, | ||
dtype=self.dtype_policy, | ||
) | ||
elif self.rope_scaling_type == "su": | ||
if len(self.rope_scaling_short_factor) != head_dim // 2: | ||
raise ValueError( | ||
"`rope_scaling_short_factor` must be of length " | ||
"`hidden_dim//num_query_heads//2`. " | ||
"`len(rope_scaling_short_factor)` is " | ||
f"{len(self.rope_scaling_short_factor)} " | ||
f"while it should be {head_dim // 2}." | ||
) | ||
if len(self.rope_scaling_long_factor) != head_dim // 2: | ||
raise ValueError( | ||
"`rope_scaling_long_factor` must be of length " | ||
"`hidden_dim//num_query_heads//2`. " | ||
"`len(rope_scaling_long_factor)` is " | ||
f"{len(self.rope_scaling_long_factor)} " | ||
f"while it should be {head_dim // 2}." | ||
) | ||
self.rotary_embedding_layer = Phi4SuScaledRotaryEmbedding( | ||
inverese_freq_short_factor=self.rope_scaling_short_factor, | ||
inverese_freq_long_factor=self.rope_scaling_long_factor, | ||
max_sequence_length=self.max_sequence_length, | ||
pretraining_sequence_length=self.pretraining_sequence_length, | ||
max_wavelength=self.rope_max_wavelength, | ||
dtype=self.dtype_policy, | ||
) | ||
else: | ||
raise ValueError( | ||
'`rope_scaling_type` must be `None` or `"su"`.' | ||
"if `None` is choosed, `RotaryEmbedding` will be used." | ||
'if `"su"` is choosed, `Phi4SuScaledRotaryEmbedding` will be ' | ||
"used." | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. May be change this to --> |
||
) | ||
|
||
self.built = True | ||
|
||
def call( | ||
self, | ||
hidden_states, | ||
attention_mask=None, | ||
cache=None, | ||
cache_update_index=None, | ||
training=None, | ||
): | ||
start_index = ( | ||
cache_update_index if cache_update_index is not None else 0 | ||
) | ||
|
||
query = self.query_dense(hidden_states) | ||
key = self.key_dense(hidden_states) | ||
value = self.value_dense(hidden_states) | ||
|
||
# Compute RoPE for queries | ||
query = self.rotary_embedding_layer(query, start_index=start_index) | ||
key = self.rotary_embedding_layer(key, start_index=start_index) | ||
|
||
if cache is not None: | ||
key_cache = cache[:, 0, ...] | ||
value_cache = cache[:, 1, ...] | ||
if cache_update_index is None: | ||
key = key_cache | ||
value = value_cache | ||
else: | ||
start = [0, cache_update_index, 0, 0] | ||
key = ops.slice_update(key_cache, start, key) | ||
value = ops.slice_update(value_cache, start, value) | ||
cache = ops.stack((key, value), axis=1) | ||
else: | ||
if cache_update_index is not None: | ||
raise ValueError( | ||
"`cache_update_index` should not be set if `cache` is " | ||
f"`None`. Received: cache={cache}, " | ||
f"cache_update_index={cache_update_index}" | ||
) | ||
|
||
# [batch_shape, seq_len, num_key_value_heads, head_dim] | ||
# -> [batch_shape, seq_len, num_heads, head_dim] | ||
key = ops.repeat(key, repeats=self.num_key_value_groups, axis=2) | ||
value = ops.repeat(value, repeats=self.num_key_value_groups, axis=2) | ||
|
||
attention_output = self._compute_attention( | ||
query, key, value, attention_mask | ||
) | ||
|
||
attention_output = self.dropout_layer( | ||
attention_output, training=training | ||
) | ||
|
||
attention_output = self.output_dense(attention_output) | ||
|
||
if cache is not None: | ||
return attention_output, cache | ||
return attention_output | ||
|
||
def _masked_softmax(self, attention_scores, attention_mask=None): | ||
if attention_mask is not None: | ||
return self.softmax(attention_scores, attention_mask[:, None, :, :]) | ||
return self.softmax(attention_scores) | ||
|
||
def _compute_attention(self, query, key, value, attention_mask=None): | ||
if fused_attention_op_available(): | ||
# Use `dot_product_attention` with Flash Attention support if | ||
# available. | ||
if attention_mask is not None: | ||
attention_mask = ops.expand_dims(attention_mask, axis=1) | ||
attention_mask = ops.cast(attention_mask, dtype="bool") | ||
attention_output = ops.dot_product_attention( | ||
query, | ||
key, | ||
value, | ||
mask=attention_mask, | ||
scale=self._inv_norm_factor, | ||
) | ||
return attention_output | ||
|
||
attention_scores = ops.einsum("bquh,bkuh->buqk", query, key) | ||
attention_scores = ops.multiply( | ||
attention_scores, | ||
ops.cast(self._inv_norm_factor, self.compute_dtype), | ||
) | ||
attention_scores = self._masked_softmax( | ||
attention_scores, attention_mask | ||
) | ||
attention_scores = ops.cast(attention_scores, self.compute_dtype) | ||
attention_output = ops.einsum( | ||
"buqk,bkuh->bquh", attention_scores, value | ||
) | ||
|
||
return attention_output | ||
|
||
def get_config(self): | ||
config = super().get_config() | ||
config.update( | ||
{ | ||
"num_query_heads": self.num_query_heads, | ||
"num_key_value_heads": self.num_key_value_heads, | ||
"kernel_initializer": keras.initializers.serialize( | ||
self.kernel_initializer | ||
), | ||
"dropout": self.dropout, | ||
"max_sequence_length": self.max_sequence_length, | ||
"pretraining_sequence_length": self.pretraining_sequence_length, | ||
"rope_max_wavelength": self.rope_max_wavelength, | ||
"rope_scaling_type": self.rope_scaling_type, | ||
"rope_scaling_short_factor": self.rope_scaling_short_factor, | ||
"rope_scaling_long_factor": self.rope_scaling_long_factor, | ||
} | ||
) | ||
return config |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.