-
Notifications
You must be signed in to change notification settings - Fork 289
Add Esm #2244
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Add Esm #2244
Changes from all commits
f9ff098
cc4123b
d3f598d
737a147
140207b
cc9a11c
f8da784
72e9829
16bb9f2
5cbf577
6e9f817
2815e9c
79e738c
20d5051
fb18c98
7609ab4
e7b9b76
11f56fd
bd7380a
0f6261c
95bb704
c2a2787
cc69d43
baff84c
4577f83
2549396
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -196,6 +196,22 @@ | |
from keras_hub.src.models.electra.electra_tokenizer import ( | ||
ElectraTokenizer as ElectraTokenizer, | ||
) | ||
from keras_hub.src.models.esm.esm_backbone import ESMBackbone as ESM2Backbone | ||
from keras_hub.src.models.esm.esm_backbone import ESMBackbone as ESMBackbone | ||
from keras_hub.src.models.esm.esm_classifier import ( | ||
ESMProteinClassifier as ESMProteinClassifier, | ||
) | ||
from keras_hub.src.models.esm.esm_classifier_preprocessor import ( | ||
ESMProteinClassifierPreprocessor as ESMProteinClassifierPreprocessor, | ||
) | ||
from keras_hub.src.models.esm.esm_masked_plm import ( | ||
ESMMaskedPLM as ESM2MaskedPLM, | ||
) | ||
from keras_hub.src.models.esm.esm_masked_plm import ESMMaskedPLM as ESMMaskedPLM | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. |
||
from keras_hub.src.models.esm.esm_masked_plm_preprocessor import ( | ||
ESMMaskedPLMPreprocessor as ESMMaskedPLMPreprocessor, | ||
) | ||
from keras_hub.src.models.esm.esm_tokenizer import ESMTokenizer as ESMTokenizer | ||
from keras_hub.src.models.f_net.f_net_backbone import ( | ||
FNetBackbone as FNetBackbone, | ||
) | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
import keras | ||
from keras import ops | ||
from packaging import version | ||
|
||
from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding | ||
from keras_hub.src.models.roformer_v2.roformer_v2_attention import ( | ||
RoformerAttention, | ||
) | ||
|
||
|
||
class ESMRotaryEmbedding(RotaryEmbedding): | ||
def _compute_cos_sin_embedding(self, x, position=1): | ||
dim = x.shape[-1] | ||
inv_freq = self.scaling_factor / ( | ||
self.max_wavelength ** (ops.arange(0, dim, 2, dtype=x.dtype) / dim) | ||
) | ||
t = ops.arange(x.shape[position], dtype=x.dtype) | ||
freqs = ops.outer(t, inv_freq) | ||
emb = ops.concatenate((freqs, freqs), axis=-1) | ||
|
||
cos_emb = ops.cos(emb)[None, :, None, :] | ||
sin_emb = ops.sin(emb)[None, :, None, :] | ||
return cos_emb, sin_emb | ||
|
||
def call(self, q, k, position=1): | ||
cos_emb, sin_emb = self._compute_cos_sin_embedding(q, position) | ||
|
||
return ( | ||
self.apply_rotary_pos_emb(q, cos_emb, sin_emb), | ||
self.apply_rotary_pos_emb(k, cos_emb, sin_emb), | ||
) | ||
|
||
def rotate_half(self, x): | ||
x1, x2 = ops.split(x, 2, -1) | ||
return ops.concatenate((-x2, x1), axis=-1) | ||
|
||
def apply_rotary_pos_emb(self, x, cos, sin): | ||
cos = cos[:, : x.shape[1], :, :] | ||
sin = sin[:, : x.shape[1], :, :] | ||
|
||
return (x * cos) + (self.rotate_half(x) * sin) | ||
|
||
|
||
class EsmSelfAttention(RoformerAttention): | ||
"""MultiHeadAttention by ESM2 | ||
|
||
Referred to the implementation of HuggingFace. | ||
In fact, this part of the calculation is exactly the same as RoFormer. | ||
Only the calculation of the rotary part is different. | ||
""" | ||
|
||
def __init__(self, use_rotary=True, **kwargs): | ||
super().__init__(**kwargs) | ||
self.use_rotary = use_rotary | ||
|
||
def build(self, input_shape): | ||
super().build(input_shape) | ||
if self.use_rotary: | ||
self.rotary_embedding_layer = ESMRotaryEmbedding( | ||
max_wavelength=self.max_wavelength, dtype=self.dtype_policy | ||
) | ||
self.rotary_embedding_layer.build([]) | ||
|
||
def call(self, x, attention_mask=None): | ||
qw = self.q_dense(x) | ||
kw = self.k_dense(x) | ||
vw = self.v_dense(x) | ||
|
||
b, s = ops.shape(qw)[:2] | ||
qw = ops.reshape(qw, (b, s, self.heads, self.head_size)) | ||
kw = ops.reshape(kw, (b, s, self.heads, self.head_size)) | ||
vw = ops.reshape(vw, (b, s, self.heads, self.head_size)) | ||
|
||
if self.use_rotary: | ||
qw, kw = self.rotary_embedding_layer(qw, kw) | ||
if version.parse(keras.__version__) < version.parse("3.6"): | ||
raise ValueError("Please make sure your Keras version is >=3.6.") | ||
flash_attention = keras.config.is_flash_attention_enabled() | ||
attention_mask = ops.reshape(attention_mask, [b, 1, s, 1]) | ||
if keras.config.backend() == "torch": | ||
attention_mask = ops.repeat(attention_mask, s, -1) | ||
attention_mask = ops.transpose(attention_mask, [0, 1, 3, 2]) | ||
o = ops.dot_product_attention( | ||
qw, kw, vw, mask=attention_mask, flash_attention=flash_attention | ||
) | ||
return self.o_dense(ops.reshape(o, [b, s, -1])) | ||
|
||
def get_config(self): | ||
config = super().get_config() | ||
config.update( | ||
{ | ||
"use_rotary": self.use_rotary, | ||
} | ||
) | ||
return config |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,227 @@ | ||
import keras | ||
from keras import activations | ||
|
||
from keras_hub.src.api_export import keras_hub_export | ||
from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding | ||
from keras_hub.src.models.backbone import Backbone | ||
from keras_hub.src.models.esm.esm_encoder import ESMEncoder | ||
|
||
|
||
def esm2_kernel_initializer(stddev=0.02): | ||
sachinprasadhs marked this conversation as resolved.
Show resolved
Hide resolved
|
||
return keras.initializers.TruncatedNormal(stddev=stddev) | ||
|
||
|
||
@keras_hub_export( | ||
["keras_hub.models.ESM2Backbone", "keras_hub.models.ESMBackbone"] | ||
) | ||
class ESMBackbone(Backbone): | ||
"""A ESM2 and ESM encoder network. | ||
|
||
This class implements a bi-directional Transformer-based encoder as | ||
described in ["ESM"](https://github.com/facebookresearch/esm). | ||
|
||
The default constructor gives a fully customizable, randomly initialized | ||
ESM2 encoder with any number of layers, heads, and embed dim.To | ||
load preset architectures and weights, use the `from_preset()` constructor. | ||
|
||
|
||
Args: | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Add There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Still activation and max_wavelength description is missing! There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. add arg description for pad_token_id as well |
||
vocabulary_size: int. The size of the token vocabulary. | ||
num_layers: int. The number of transformer layers. | ||
num_heads: int. The number of attention heads for each transformer. | ||
The hidden size must be divisible by the number of attention heads. | ||
hidden_dim: int. The size of the transformer encoding and pooler layers. | ||
intermediate_dim: int. The output dimension of the first Dense layer in | ||
a two-layer feedforward network for each transformer. | ||
dropout: float. Dropout probability for the Transformer encoder. | ||
sachinprasadhs marked this conversation as resolved.
Show resolved
Hide resolved
|
||
Defaults to 0.1 | ||
use_pre_layer_norm:bool.If true, then layer norm will be used before | ||
entering the transformer block. | ||
Since it's pre-norm, the default is false. | ||
max_sequence_length: int. The maximum sequence length that this encoder | ||
can consume. If None, `max_sequence_length` uses the value from | ||
sequence length. This determines the variable shape for positional | ||
embeddings. | ||
position_embedding_type: str. The position embedding type to use. | ||
One of "absolute" and "rotary". | ||
Use "absolute" for ESM1. Use "rotary" for ESM2. Defaults to "rotary" | ||
max_wavelength : int. The maximum angular wavelength of | ||
the sine/cosine curves, for rotary embeddings. Defaults to `10000`. | ||
activation :string or keras.activations. The activation to | ||
use for the transformer. Defaults to `"gelu"`. | ||
pad_token_id: int.padding token id. Normally 0, | ||
but is set to 1 in the esm2 model | ||
dtype: None or str or keras.mixed_precision.DTypePolicy. The dtype to | ||
use for model computations and weights. Note that some computations, | ||
such as softmax and layer normalization, will always be done at | ||
float32 precision regardless of dtype. | ||
|
||
Examples: | ||
```python | ||
input_data = { | ||
"token_ids": np.ones(shape=(1, 12), dtype="int32"), | ||
} | ||
|
||
# Pretrained ESM2 encoder. | ||
model = keras_hub.models.ESM2Backbone.from_preset('hf://facebook/esm2_t6_8M_UR50D') | ||
model(input_data) | ||
|
||
# Randomly initialized ESM2 encoder with a custom config. | ||
model = keras_hub.models.ESM2Backbone( | ||
vocabulary_size=30552, | ||
num_layers=4, | ||
num_heads=4, | ||
hidden_dim=256, | ||
intermediate_dim=512, | ||
head_size = 64, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. |
||
) | ||
model(input_data) | ||
``` | ||
""" | ||
|
||
def __init__( | ||
self, | ||
vocabulary_size, | ||
num_layers, | ||
num_heads, | ||
hidden_dim, | ||
intermediate_dim, | ||
use_bias=True, | ||
activation="gelu", | ||
dropout=0.1, | ||
dtype=None, | ||
max_sequence_length=1024, | ||
max_wavelength=10000, | ||
layer_norm_eps=1e-12, | ||
use_pre_layer_norm=False, | ||
position_embedding_type="rotary", | ||
pad_token_id=0, | ||
**kwargs, | ||
): | ||
if position_embedding_type not in ( | ||
"rotary", | ||
"absolute", | ||
): | ||
raise ValueError( | ||
'`position_embedding_type` must be either `"rotary"`, or ' | ||
'`"absolute"`. Received ' | ||
f"position_embedding_type={position_embedding_type}." | ||
) | ||
head_size = hidden_dim // num_heads | ||
# === Layers === | ||
self.token_embedding = keras.layers.Embedding( | ||
input_dim=vocabulary_size, | ||
output_dim=hidden_dim, | ||
embeddings_initializer=esm2_kernel_initializer(), | ||
dtype=dtype, | ||
name="token_embedding", | ||
) | ||
if position_embedding_type == "absolute": | ||
self.position_embedding = PositionEmbedding( | ||
initializer=esm2_kernel_initializer(), | ||
sequence_length=max_sequence_length, | ||
dtype=dtype, | ||
name="position_embedding", | ||
) | ||
self.embeddings_add = keras.layers.Add( | ||
dtype=dtype, | ||
name="embeddings_add", | ||
) | ||
|
||
self.output_layer_norm = keras.layers.LayerNormalization( | ||
epsilon=layer_norm_eps, | ||
dtype=dtype, | ||
name="output_layer_norm", | ||
) | ||
if use_pre_layer_norm: | ||
self.emb_layer_norm = keras.layers.LayerNormalization( | ||
epsilon=layer_norm_eps, | ||
dtype=dtype, | ||
name="emb_layer_norm", | ||
) | ||
self.transformer_layers = [] | ||
for i in range(num_layers): | ||
layer = ESMEncoder( | ||
heads=num_heads, | ||
head_size=head_size, | ||
intermediate_size=intermediate_dim, | ||
use_bias=use_bias, | ||
max_wavelength=max_wavelength, | ||
dropout=dropout, | ||
activation=activation, | ||
kernel_initializer=esm2_kernel_initializer(), | ||
layer_norm_eps=layer_norm_eps, | ||
dtype=dtype, | ||
use_rotary=position_embedding_type == "rotary", | ||
name=f"transformer_layer_{i}", | ||
) | ||
self.transformer_layers.append(layer) | ||
|
||
# === Functional Model === | ||
token_id_input = keras.Input( | ||
shape=(None,), dtype="int32", name="token_ids" | ||
) | ||
|
||
attention_mask = keras.ops.not_equal(token_id_input, pad_token_id) | ||
|
||
token_vector = self.token_embedding(token_id_input) | ||
if position_embedding_type == "absolute": | ||
position_vector = self.position_embedding( | ||
token_vector, start_index=pad_token_id | ||
) | ||
x = self.embeddings_add([token_vector, position_vector]) | ||
else: | ||
x = token_vector | ||
if use_pre_layer_norm: | ||
x = self.emb_layer_norm(x) | ||
for transformer_layer in self.transformer_layers: | ||
x = transformer_layer(x, attention_mask=attention_mask) | ||
output = self.output_layer_norm(x) | ||
super().__init__( | ||
inputs={ | ||
"token_ids": token_id_input, | ||
}, | ||
outputs=output, | ||
dtype=dtype, | ||
**kwargs, | ||
) | ||
|
||
# === Config === | ||
self.vocabulary_size = vocabulary_size | ||
self.num_layers = num_layers | ||
self.num_heads = num_heads | ||
self.hidden_dim = hidden_dim | ||
self.intermediate_dim = intermediate_dim | ||
self.dropout = dropout | ||
self.max_wavelength = max_wavelength | ||
self.head_size = head_size | ||
self.activation = activations.get(activation) | ||
self.use_bias = use_bias | ||
self.start_token_index = 0 | ||
sachinprasadhs marked this conversation as resolved.
Show resolved
Hide resolved
|
||
self.layer_norm_eps = layer_norm_eps | ||
self.max_sequence_length = max_sequence_length | ||
self.use_pre_layer_norm = use_pre_layer_norm | ||
self.position_embedding_type = position_embedding_type | ||
self.pad_token_id = pad_token_id | ||
|
||
def get_config(self): | ||
config = super().get_config() | ||
config.update( | ||
{ | ||
"vocabulary_size": self.vocabulary_size, | ||
"num_layers": self.num_layers, | ||
"num_heads": self.num_heads, | ||
"hidden_dim": self.hidden_dim, | ||
"intermediate_dim": self.intermediate_dim, | ||
"dropout": self.dropout, | ||
"max_wavelength": self.max_wavelength, | ||
"use_bias": self.use_bias, | ||
"activation": activations.serialize(self.activation), | ||
"layer_norm_eps": self.layer_norm_eps, | ||
"use_pre_layer_norm": self.use_pre_layer_norm, | ||
"position_embedding_type": self.position_embedding_type, | ||
"max_sequence_length": self.max_sequence_length, | ||
"pad_token_id": self.pad_token_id, | ||
} | ||
) | ||
return config |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
import keras | ||
import pytest | ||
from keras import ops | ||
from packaging import version | ||
|
||
from keras_hub.src.models.esm.esm_backbone import ESMBackbone | ||
from keras_hub.src.tests.test_case import TestCase | ||
|
||
|
||
class ESMBackboneTest(TestCase): | ||
def setUp(self): | ||
self.init_kwargs = { | ||
"vocabulary_size": 10, | ||
"num_layers": 2, | ||
"num_heads": 1, | ||
"hidden_dim": 2, | ||
"intermediate_dim": 4, | ||
} | ||
self.input_data = { | ||
"token_ids": ops.ones((2, 5), dtype="int32"), | ||
} | ||
|
||
def test_backbone_basics(self): | ||
if version.parse(keras.__version__) < version.parse("3.6"): | ||
self.skipTest("Failing on keras lower version") | ||
self.run_backbone_test( | ||
cls=ESMBackbone, | ||
init_kwargs=self.init_kwargs, | ||
input_data=self.input_data, | ||
expected_output_shape=(2, 5, 2), | ||
) | ||
sachinprasadhs marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
@pytest.mark.large | ||
def test_saved_model(self): | ||
self.run_model_saving_test( | ||
cls=ESMBackbone, | ||
init_kwargs=self.init_kwargs, | ||
input_data=self.input_data, | ||
) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This import of
ESMBackbone
is redundant. The nameESMBackbone
is already available in the module's namespace from the import on the previous line. Removing this line will make the code cleaner. While I see the file is autogenerated, this redundancy should ideally be fixed in the generation script.