-
Notifications
You must be signed in to change notification settings - Fork 277
Add Mixtral #2196
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
kanpuriyanawab
wants to merge
12
commits into
keras-team:master
Choose a base branch
from
kanpuriyanawab:mixtral
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Add Mixtral #2196
Changes from all commits
Commits
Show all changes
12 commits
Select commit
Hold shift + click to select a range
90e7c59
mistral init commit
kanpuriyanawab 43764fc
wip mixtral
kanpuriyanawab b509c48
mixtral wip
kanpuriyanawab b0160cb
checkpoint conversion wip
kanpuriyanawab b9bc2e3
mixtral weight matching complete
kanpuriyanawab d5aee61
batched moe impl
kanpuriyanawab 3597d53
output matching with batched moe complete
kanpuriyanawab 0c73de0
update
kanpuriyanawab e554b13
Merge branch 'keras-team:master' into mixtral
kanpuriyanawab ff5f4b1
flash attention fixes
kanpuriyanawab 1dba1a3
bug fixes
kanpuriyanawab 71d7401
bug fix
kanpuriyanawab File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,263 @@ | ||
import inspect | ||
import math | ||
|
||
import keras | ||
from keras import ops | ||
|
||
from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding | ||
from keras_hub.src.utils.keras_utils import clone_initializer | ||
from keras_hub.src.utils.keras_utils import fused_attention_op_available | ||
from keras_hub.src.utils.keras_utils import gpu_supports_fused_attention_op | ||
from keras_hub.src.utils.keras_utils import running_on_gpu | ||
from keras_hub.src.utils.keras_utils import running_on_tpu | ||
|
||
|
||
class CachedMixtralAttention(keras.layers.Layer): | ||
"""A cached grounded query attention layer with sliding window.""" | ||
|
||
def __init__( | ||
self, | ||
num_query_heads, | ||
num_key_value_heads, | ||
rope_max_wavelength=10000, | ||
rope_scaling_factor=1.0, | ||
kernel_initializer="glorot_uniform", | ||
sliding_window=512, | ||
dropout=0, | ||
**kwargs, | ||
): | ||
super().__init__(**kwargs) | ||
self._num_query_heads = num_query_heads | ||
self._num_key_value_heads = num_key_value_heads | ||
self._sliding_window = sliding_window | ||
self._dropout = dropout | ||
|
||
self._num_key_value_groups = num_query_heads // num_key_value_heads | ||
self._rope_max_wavelength = rope_max_wavelength | ||
|
||
self._kernel_initializer = keras.initializers.get( | ||
clone_initializer(kernel_initializer) | ||
) | ||
|
||
self._rope_scaling_factor = rope_scaling_factor | ||
|
||
def build(self, inputs_shape): | ||
# Einsum variables: | ||
# b = batch size | ||
# q = query length | ||
# k = key/value length | ||
# m = model dim | ||
# u = num query heads | ||
# v = num key/value heads | ||
# h = head dim | ||
self._hidden_dim = inputs_shape[-1] | ||
self._head_dim = self._hidden_dim // self._num_query_heads | ||
self._inv_norm_factor = 1.0 / math.sqrt(self._head_dim) | ||
|
||
self._query_dense = keras.layers.EinsumDense( | ||
equation="bqm,muh->bquh", | ||
output_shape=(None, self._num_query_heads, self._head_dim), | ||
kernel_initializer=self._kernel_initializer, | ||
dtype=self.dtype_policy, | ||
name="query", | ||
) | ||
self._query_dense.build(inputs_shape) | ||
|
||
self._key_dense = keras.layers.EinsumDense( | ||
equation="bkm,mvh->bkvh", | ||
output_shape=( | ||
None, | ||
self._num_key_value_heads, | ||
self._head_dim, | ||
), | ||
kernel_initializer=self._kernel_initializer, | ||
dtype=self.dtype_policy, | ||
name="key", | ||
) | ||
self._key_dense.build(inputs_shape) | ||
|
||
self._value_dense = keras.layers.EinsumDense( | ||
equation="bkm,mvh->bkvh", | ||
output_shape=( | ||
None, | ||
self._num_key_value_heads, | ||
self._head_dim, | ||
), | ||
kernel_initializer=self._kernel_initializer, | ||
dtype=self.dtype_policy, | ||
name="value", | ||
) | ||
self._value_dense.build(inputs_shape) | ||
|
||
self._softmax = keras.layers.Softmax( | ||
axis=-1, | ||
dtype="float32", | ||
name="attention_softmax", | ||
) | ||
|
||
self._dropout_layer = keras.layers.Dropout( | ||
rate=self._dropout, | ||
dtype=self.dtype_policy, | ||
) | ||
|
||
self._output_dense = keras.layers.EinsumDense( | ||
equation="bquh,uhm->bqm", | ||
output_shape=(None, self._hidden_dim), | ||
kernel_initializer=self._kernel_initializer, | ||
dtype=self.dtype_policy, | ||
name="attention_output", | ||
) | ||
self._output_dense.build( | ||
(None, None, self._num_query_heads, self._head_dim) | ||
) | ||
|
||
self.rotary_embedding_layer = RotaryEmbedding( | ||
max_wavelength=self._rope_max_wavelength, | ||
scaling_factor=self._rope_scaling_factor, | ||
dtype=self.dtype_policy, | ||
) | ||
|
||
self._dot_product_equation = "bquh,bkuh->buqk" | ||
self._combine_equation = "buqk,bkuh->bquh" | ||
|
||
self.built = True | ||
|
||
def call( | ||
self, | ||
hidden_states, | ||
attention_mask=None, | ||
cache=None, | ||
cache_update_index=None, | ||
training=None, | ||
): | ||
start_index = ( | ||
cache_update_index if cache_update_index is not None else 0 | ||
) | ||
|
||
query = self._query_dense(hidden_states) | ||
|
||
# Compute RoPE for queries | ||
query = self.rotary_embedding_layer(query, start_index=start_index) | ||
|
||
def _compute_key_value(x): | ||
key, value = self._key_dense(x), self._value_dense(x) | ||
# Compute RoPE for keys | ||
key = self.rotary_embedding_layer(key, start_index=start_index) | ||
return key, value | ||
|
||
if cache is not None: | ||
key_cache = cache[:, 0, ...] | ||
value_cache = cache[:, 1, ...] | ||
if cache_update_index is None: | ||
key = key_cache | ||
value = value_cache | ||
else: | ||
key_update, value_update = _compute_key_value(hidden_states) | ||
start = [0, cache_update_index, 0, 0] | ||
key = ops.slice_update(key_cache, start, key_update) | ||
value = ops.slice_update(value_cache, start, value_update) | ||
cache = ops.stack((key, value), axis=1) | ||
else: | ||
if cache_update_index is not None: | ||
raise ValueError( | ||
"`cache_update_index` should not be set if `cache` is " | ||
f"`None`. Received: cache={cache}, " | ||
f"cache_update_index={cache_update_index}" | ||
) | ||
key, value = _compute_key_value(hidden_states) | ||
|
||
# [batch_shape, seq_len, num_key_value_heads, head_dim] | ||
# -> [batch_shape, seq_len, num_heads, head_dim] | ||
key = ops.repeat(key, repeats=self._num_key_value_groups, axis=2) | ||
value = ops.repeat(value, repeats=self._num_key_value_groups, axis=2) | ||
|
||
attention_output = self._compute_attention( | ||
query, key, value, attention_mask | ||
) | ||
|
||
attention_output = self._dropout_layer( | ||
attention_output, training=training | ||
) | ||
|
||
attention_output = self._output_dense(attention_output) | ||
|
||
if cache is not None: | ||
return attention_output, cache | ||
return attention_output | ||
|
||
def _masked_softmax(self, attention_scores, attention_mask=None): | ||
if attention_mask is not None: | ||
return self._softmax( | ||
attention_scores, attention_mask[:, None, :, :] | ||
) | ||
return self._softmax(attention_scores) | ||
|
||
def _use_fused_attention_op(self): | ||
if not fused_attention_op_available(): | ||
return False | ||
if self.dropout > 0.0: | ||
return False | ||
if running_on_gpu(): | ||
# GPU never supports softcap in the fused op. | ||
if self.logit_soft_cap is not None: | ||
return False | ||
return gpu_supports_fused_attention_op() | ||
elif running_on_tpu(): | ||
# TPU supports softcap with on keras >= 3.10. | ||
sig = inspect.signature(ops.dot_product_attention) | ||
return "attn_logits_soft_cap" in sig.parameters | ||
else: | ||
return False | ||
|
||
def _compute_attention(self, query, key, value, attention_mask=None): | ||
if self._use_fused_attention_op(): | ||
if attention_mask is not None: | ||
attention_mask = ops.expand_dims(attention_mask, axis=1) | ||
attention_mask = ops.cast(attention_mask, dtype="bool") | ||
|
||
if self.logit_soft_cap: | ||
kwargs = {"attn_logits_soft_cap": self.logit_soft_cap} | ||
else: | ||
kwargs = {} | ||
|
||
attention_output = ops.dot_product_attention( | ||
query, | ||
key, | ||
value, | ||
mask=attention_mask, | ||
scale=self._inv_norm_factor, | ||
**kwargs, | ||
) | ||
return attention_output | ||
|
||
attention_scores = ops.einsum(self._dot_product_equation, query, key) | ||
attention_scores = ops.multiply( | ||
attention_scores, | ||
ops.cast(self._inv_norm_factor, self.compute_dtype), | ||
) | ||
attention_scores = self._masked_softmax( | ||
attention_scores, attention_mask | ||
) | ||
attention_scores = ops.cast(attention_scores, self.compute_dtype) | ||
attention_output = ops.einsum( | ||
self._combine_equation, attention_scores, value | ||
) | ||
|
||
return attention_output | ||
|
||
def get_config(self): | ||
config = super().get_config() | ||
config.update( | ||
{ | ||
"num_query_heads": self._num_query_heads, | ||
"num_key_value_heads": self._num_key_value_heads, | ||
"rope_max_wavelength": self._rope_max_wavelength, | ||
"rope_scaling_factor": self._rope_scaling_factor, | ||
"kernel_initializer": keras.initializers.serialize( | ||
self._kernel_initializer | ||
), | ||
"sliding_window": self._sliding_window, | ||
"dropout": self._dropout, | ||
} | ||
) | ||
return config |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
update the layer names to be compatible with enable_lora