Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Choose the start date on the Dashboard for running the model #36

Merged
merged 3 commits into from
Feb 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion coverage.xml
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
<?xml version="1.0" ?>
<coverage version="7.3.1" timestamp="1708496031059" lines-valid="147" lines-covered="145" line-rate="0.9864" branches-valid="54" branches-covered="51" branch-rate="0.9444" complexity="0">
<coverage version="7.3.1" timestamp="1708500367269" lines-valid="147" lines-covered="145" line-rate="0.9864" branches-valid="54" branches-covered="51" branch-rate="0.9444" complexity="0">
<!-- Generated by coverage.py: https://coverage.readthedocs.io/en/7.3.1 -->
<!-- Based on https://raw.githubusercontent.com/cobertura/web/master/htdocs/xml/coverage-04.dtd -->
<sources>
Expand Down
23 changes: 7 additions & 16 deletions covid19_drdfm/streamlit/Dashboard.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from datetime import datetime
import json
import time
from pathlib import Path
Expand Down Expand Up @@ -63,10 +64,12 @@ def get_data():

# State selections
state_sel = st.multiselect("States", df.State.unique(), default=df.State.unique())
c1, c2, c3 = st.columns([0.5, 0.25, 0.25])
c1, c2, c3, c4 = st.columns([0.35, 0.25, 0.20, 0.20])
outdir = c1.text_input("Output Directory", value="./")
mult_sel = c2.slider("Global Multiplier", 0, 4, 2)
maxiter = c3.slider("Max EM Iterations", 1000, 20_000, 10_000, 100)
date_start = c2.date_input("Start Date", value=df.Time.min(), min_value=df.Time.min(), max_value=df.Time.max())
mult_sel = c3.slider("Global Multiplier", 0, 4, 2)
maxiter = c4.slider("Max EM Iterations", 1000, 20_000, 10_000, 100)
df = df[df.Time > date_start.isoformat()]

# Metrics
lengths = [len(selectors[x]) for x in selectors]
Expand Down Expand Up @@ -110,10 +113,7 @@ def get_data():
subdir / "filtered-factors.csv" for subdir in outdir.iterdir() if (subdir / "filtered-factors.csv").exists()
]
dfs = [pd.read_csv(x) for x in filt_paths]
try:
filt_df = pd.concat([x for x in dfs if ~x.empty]).set_index("Time")
except ValueError:
filt_df = pd.DataFrame()
filt_df = pd.concat([x for x in dfs if ~x.empty]).set_index("Time")
filt_df.to_csv(outdir / "filtered-factors.csv")
st.dataframe(filt_df)

Expand All @@ -122,13 +122,4 @@ def get_data():
minutes, seconds = divmod(rem, 60)
st.write(f"Runtime: {int(hours):0>2}H:{int(minutes):0>2}M:{seconds:05.2f}S")

fail_path = outdir / "failed.txt"
if fail_path.exists():
with open(fail_path) as f:
lines = f.readlines()
_, c1, c2, _ = st.columns([0.1, 0.2, 0.6, 0.1])
c1.metric("Failures", value=len(lines))
lines = "\n".join(lines)
c2.warning(f"\t\tFailures Detected\n\n{lines}")

st.balloons()
5 changes: 4 additions & 1 deletion covid19_drdfm/streamlit/pages/1_Factor_Analysis.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
factor_path = path_to_results / "filtered-factors.csv"
df = pd.read_csv(factor_path, index_col=0)
df["Time"] = df.index
df.index.name = "Time"

filter_list = ["Global", "Unnamed", "Time", "State"]
factor = st.sidebar.selectbox("Factor", [x for x in df.columns if x not in filter_list])
Expand All @@ -40,7 +41,9 @@
columns = [*factor_vars, "State", "Time"]

# Normalize original data for state / valid variables
new = normalize(raw.query("State == @state")[columns].iloc[1:]) # .reset_index(drop=True)
raw = raw.set_index("Time", drop=False)
raw = raw.loc[df.index, :]
new = normalize(raw.query("State == @state")[columns]) # .iloc[1:]) # .reset_index(drop=True)

# Normalize factors and add to new dataframe
if st.sidebar.checkbox("Invert Factor"):
Expand Down
Loading