Skip to content

israelyago/AlexNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AlexNet Image classification

Data

Requirements

The data is acquired from HuggingFace imagenet-1k (needs login).

This project needs some available space of at least:

Size (GB)
Raw data 333.3
Transformed data 1125.5
Total 1458.8

ETL

From the root of this project, run:

  1. python etl/extract.py
  2. python etl/transform.py

The local folder dataset should have the following structure:

dataset
└── imagenet_1k_256x256_float32.h5

Running locally with pip

  1. Run python -m venv .venv

  2. Activate the virtual environment with source .venv/bin/activate

  3. Install pip dependencies pip install -r requirements.txt

  4. Start a local MLflow server inside a container:

    podman run -d -p 5000:5000 -v ./mlruns:/mlflow/mlruns ghcr.io/mlflow/mlflow mlflow server --backend-store-uri /mlflow/mlruns --default-artifact-root /mlflow/mlruns --host 0.0.0.0
  5. Run python src/main.py to train the model

Running locally with Podman/Docker

  1. Build the image: podman build -t alex-net:local .
  2. Example of run command (Adjust to your GPU config):
    podman run \
    -v "YOUR_DATASET_DIR":/app/dataset \
    -e DATASET_FILE_DIR="/app/dataset/imagenet_1k_256x256_float32.h5" \
    --device nvidia.com/gpu=all \
    --shm-size=512m \
    alex-net:local

Development

When changing the dependencies of pip:

  1. Run: pip freeze > requirements.txt

About

AlexNet PyTorch Reproduction, based on the original 2012 ImageNet paper

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published