Skip to content

Commit

Permalink
added license and updated readme
Browse files Browse the repository at this point in the history
  • Loading branch information
alexsoleg committed Oct 5, 2024
1 parent 9ff5934 commit be3c95d
Show file tree
Hide file tree
Showing 4 changed files with 174 additions and 104 deletions.
21 changes: 21 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2024 Image Processing Group - BarcelonaTECH - UPC

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
143 changes: 139 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,146 @@
# CartNet: Cartesian Encoding for Anisotropic Displacement Parameters Estimation

![Description of the figure](./fig/pipeline.png)
![Pipeline](./fig/pipeline.png)

[![License](https://img.shields.io/badge/license-MIT-blue.svg)](LICENSE)

## Setting Up the Environment
## Overview

To create the Conda environment for this project, use the following command:
Implementation of the CartNet model proposed in the paper:

- **Paper**: [CartNet: Cartesian Encoding for Anisotropic Displacement Parameters Estimation](link_to_paper)
- **Authors**: Àlex Solé, Albert Mosella-Montoro, Joan Cardona, Silvia Gómez-Coca, Daniel Aravena, Eliseo Ruiz and Javier Ruiz-Hidalgo
- **Conference/Journal**: [Digital Discovery](https://www.rsc.org/journals-books-databases/about-journals/digital-discovery/), Year

## Table of Contents

- [Installation](#installation)
- [Dependencies](#dependencies)
- [Dataset](#dataset)
- [Training](#training)
- [Results](#results)
- [Pre-trained Models](#pre-trained-models)
- [Citation](#citation)
- [License](#license)
- [Acknowledgments](#acknowledgments)


## Installation

Instructions to set up the environment:

```sh
# Clone the repository
git clone https://github.com/imatge-upc/CartNet.git
cd CartNet

# Create a Conda environment
conda env create -f environment.yml

# Activate the environment
conda activate CartNet
```

## Dependencies

The environment relies on these dependencies:

```sh
pytorch==1.13.1
pytorch-cuda==11.7
pyg==2.5.2
pytorch-scatter==2.1.1
scikit-learn==1.5.1
scipy==1.13.1
pandas==2.2.2
wandb==0.17.3
yacs==0.1.6
jarvis-tools==2024.8.30
lightning==2.2.5
roma==1.5.0
e3nn==0.5.1
```

These dependencies are automatically installed when you create the Conda environment using the `environment.yml` file.


## Dataset

## Training

To recreate the experiments from the paper:


### ADP:

To train **ADP Dataset** using **CartNet**:

```sh
bash train_scripts/train_cartnet_adp.sh
```

To train **ADP Dataset** using **eComformer**:

```sh
conda env create -f environment.yml
bash train_scripts/train_ecomformer_adp.sh
```
To train **ADP Dataset** using **eComformer**:

```sh
bash train_scripts/train_icomformer_adp.sh
```

## Evaluation

Instructions to evaluate the model:

```sh
# Command to evaluate the model
python evaluate.py --config configs/eval_config.yaml --checkpoint path/to/checkpoint.pth
```

## Results

Include quantitative results, such as accuracy, and qualitative results, like sample outputs:

| Metric | Value |
| -------- | ----- |
| Accuracy | 95% |
| F1 Score | 0.94 |
| ... | ... |

## Pre-trained Models

Links to download pre-trained models:

- [Model Name](link_to_model) (e.g., Google Drive, AWS S3)


## Citation

If you use this code in your research, please cite:

```bibtex
@article{your_paper_citation,
title={Title of the Paper},
author={Author1 and Author2 and Author3},
journal={Journal Name},
year={2023},
volume={XX},
number={YY},
pages={ZZZ}
}
```

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Acknowledgments

- Mention any collaborators or funding sources.
- Credit libraries or resources that were helpful.




100 changes: 0 additions & 100 deletions requirements.txt

This file was deleted.

14 changes: 14 additions & 0 deletions train_scripts/train_icomformer_adp.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
CUDA_VISIBLE_DEVICES=0 python main.py --seed 0 --name "CartNet" --model "CartNet" --dataset "ADP" --dataset_path "/scratch/g1alexs/ADP_DATASET" \
--wandb_project "CartNet Paper" --batch_size 64 --lr 0.001 --epochs 50 \
--augment &
CUDA_VISIBLE_DEVICES=4 python main.py --seed 1 --name "CartNet" --model "CartNet" --dataset "ADP" --dataset_path "/scratch/g1alexs/ADP_DATASET" \
--wandb_project "CartNet Paper" --batch_size 64 --lr 0.001 --epochs 50 \
--augment &

CUDA_VISIBLE_DEVICES=2 python main.py --seed 2 --name "CartNet" --model "CartNet" --dataset "ADP" --dataset_path "/scratch/g1alexs/ADP_DATASET" \
--wandb_project "CartNet Paper" --batch_size 64 --lr 0.001 --epochs 50 \
--augment &

CUDA_VISIBLE_DEVICES=3 python main.py --seed 3 --name "CartNet" --model "CartNet" --dataset "ADP" --dataset_path "/scratch/g1alexs/ADP_DATASET" \
--wandb_project "CartNet Paper" --batch_size 64 --lr 0.001 --epochs 50 \
--augment &

0 comments on commit be3c95d

Please sign in to comment.