Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update examples #638

Merged
merged 1 commit into from
Jan 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion examples/contrastive-image-text/run_bridgetower.py
Original file line number Diff line number Diff line change
Expand Up @@ -617,7 +617,11 @@ def transform_images(examples):
trainer.save_metrics("test", metrics)

# 12. Write Training Stats and push to hub.
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "contrastive-image-text-modeling"}
finetuned_from = model_args.model_name_or_path
# If from a local directory, don't set `finetuned_from` as this is required to be a valid repo. id on the Hub.
if os.path.isdir(finetuned_from):
finetuned_from = None
kwargs = {"finetuned_from": finetuned_from, "tasks": "contrastive-image-text-modeling"}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
Expand Down
6 changes: 5 additions & 1 deletion examples/contrastive-image-text/run_clip.py
Original file line number Diff line number Diff line change
Expand Up @@ -603,7 +603,11 @@ def filter_corrupt_images(examples):
trainer.save_metrics("eval", metrics)

# 11. Write Training Stats and push to hub.
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "contrastive-image-text-modeling"}
finetuned_from = model_args.model_name_or_path
# If from a local directory, don't set `finetuned_from` as this is required to be a valid repo. id on the Hub.
if os.path.isdir(finetuned_from):
finetuned_from = None
kwargs = {"finetuned_from": finetuned_from, "tasks": "contrastive-image-text-modeling"}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
Expand Down
66 changes: 6 additions & 60 deletions tests/example_diff/run_image_classification.txt
Original file line number Diff line number Diff line change
Expand Up @@ -30,84 +30,30 @@
> # Will error if the minimal version of Transformers and Optimum Habana are not installed. Remove at your own risks.
> check_min_version("4.34.0")
> check_optimum_habana_min_version("1.8.1")
113a122,129
> image_column_name: str = field(
> default="image",
> metadata={"help": "The name of the dataset column containing the image data. Defaults to 'image'."},
> )
> label_column_name: str = field(
> default="label",
> metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'."},
> )
178,183d193
< def collate_fn(examples):
< pixel_values = torch.stack([example["pixel_values"] for example in examples])
< labels = torch.tensor([example["labels"] for example in examples])
< return {"pixel_values": pixel_values, "labels": labels}
<
<
189c199
191c199
< parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
---
> parser = HfArgumentParser((ModelArguments, DataTrainingArguments, GaudiTrainingArguments))
226a237,243
228a237,243
> gaudi_config = GaudiConfig.from_pretrained(
> training_args.gaudi_config_name,
> cache_dir=model_args.cache_dir,
> revision=model_args.model_revision,
> use_auth_token=True if model_args.use_auth_token else None,
> )
>
227a245
229a245
> mixed_precision = training_args.bf16 or gaudi_config.use_torch_autocast
229,230c247,249
231,232c247,249
< f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
< + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
---
> f"Process rank: {training_args.local_rank}, device: {training_args.device}, "
> + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, "
> + f"mixed-precision training: {mixed_precision}"
258d276
< task="image-classification",
271d288
< task="image-classification",
273a291,309
> dataset_column_names = dataset["train"].column_names if "train" in dataset else dataset["validation"].column_names
> if data_args.image_column_name not in dataset_column_names:
> raise ValueError(
> f"--image_column_name {data_args.image_column_name} not found in dataset '{data_args.dataset_name}'. "
> "Make sure to set `--image_column_name` to the correct audio column - one of "
> f"{', '.join(dataset_column_names)}."
> )
> if data_args.label_column_name not in dataset_column_names:
> raise ValueError(
> f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. "
> "Make sure to set `--label_column_name` to the correct text column - one of "
> f"{', '.join(dataset_column_names)}."
> )
>
> def collate_fn(examples):
> pixel_values = torch.stack([example["pixel_values"] for example in examples])
> labels = torch.tensor([example[data_args.label_column_name] for example in examples])
> return {"pixel_values": pixel_values, "labels": labels}
>
283c319
< labels = dataset["train"].features["labels"].names
---
> labels = dataset["train"].features[data_args.label_column_name].names
357c393
< _train_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"]
---
> _train_transforms(pil_img.convert("RGB")) for pil_img in example_batch[data_args.image_column_name]
363c399,401
< example_batch["pixel_values"] = [_val_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"]]
---
> example_batch["pixel_values"] = [
> _val_transforms(pil_img.convert("RGB")) for pil_img in example_batch[data_args.image_column_name]
> ]
387c425
408c425
< trainer = Trainer(
---
> trainer = GaudiTrainer(
388a427
409a427
> gaudi_config=gaudi_config,
Loading