-
Notifications
You must be signed in to change notification settings - Fork 233
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add
xlm-roberta
model support for tei-gaudi use case (#1715)
Signed-off-by: kaixuanliu <[email protected]>
- Loading branch information
1 parent
167c37d
commit 43cde94
Showing
4 changed files
with
110 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .modeling_xlm_roberta import gaudi_XLMRoberta_Sdpa_SelfAttention_forward |
102 changes: 102 additions & 0 deletions
102
optimum/habana/transformers/models/xlm_roberta/modeling_xlm_roberta.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
# coding=utf-8 | ||
# Copyright 2019 Facebook AI Research and the HuggingFace Inc. team. | ||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""PyTorch XLM-RoBERTa model.""" | ||
|
||
from typing import Optional, Tuple | ||
|
||
import torch | ||
import torch.utils.checkpoint | ||
from habana_frameworks.torch.hpex.kernels import FusedSDPA | ||
|
||
from optimum.utils import logging | ||
|
||
|
||
logger = logging.get_logger(__name__) | ||
|
||
|
||
def gaudi_XLMRoberta_Sdpa_SelfAttention_forward( | ||
self, | ||
hidden_states: torch.Tensor, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
head_mask: Optional[torch.FloatTensor] = None, | ||
encoder_hidden_states: Optional[torch.FloatTensor] = None, | ||
encoder_attention_mask: Optional[torch.FloatTensor] = None, | ||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | ||
output_attentions: Optional[bool] = False, | ||
) -> Tuple[torch.Tensor]: | ||
r""" | ||
Copied from https://github.com/huggingface/transformers/blob/v4.46.3/src/transformers/models/xlm_roberta/modeling_xlm_roberta.py#L295 | ||
Changes: | ||
- Use HPU's FusedSDPA(fast mode for softmax) to replace `orch.nn.functional.scaled_dot_product_attention` | ||
""" | ||
if self.position_embedding_type != "absolute" or output_attentions or head_mask is not None: | ||
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once implemented. | ||
logger.warning_once( | ||
"XLMRobertaSdpaSelfAttention is used but `torch.nn.functional.scaled_dot_product_attention` does not support " | ||
"non-absolute `position_embedding_type` or `output_attentions=True` or `head_mask`. Falling back to " | ||
"the manual attention implementation, but specifying the manual implementation will be required from " | ||
"Transformers version v5.0.0 onwards. This warning can be removed using the argument " | ||
'`attn_implementation="eager"` when loading the model.' | ||
) | ||
return super().forward( | ||
hidden_states, | ||
attention_mask, | ||
head_mask, | ||
encoder_hidden_states, | ||
encoder_attention_mask, | ||
past_key_value, | ||
output_attentions, | ||
) | ||
|
||
bsz, tgt_len, _ = hidden_states.size() | ||
|
||
query_layer = self.transpose_for_scores(self.query(hidden_states)) | ||
|
||
# If this is instantiated as a cross-attention module, the keys and values come from an encoder; the attention | ||
# mask needs to be such that the encoder's padding tokens are not attended to. | ||
is_cross_attention = encoder_hidden_states is not None | ||
|
||
current_states = encoder_hidden_states if is_cross_attention else hidden_states | ||
attention_mask = encoder_attention_mask if is_cross_attention else attention_mask | ||
|
||
# Check `seq_length` of `past_key_value` == `len(current_states)` to support prefix tuning | ||
if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]: | ||
key_layer, value_layer = past_key_value | ||
else: | ||
key_layer = self.transpose_for_scores(self.key(current_states)) | ||
value_layer = self.transpose_for_scores(self.value(current_states)) | ||
if past_key_value is not None and not is_cross_attention: | ||
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) | ||
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) | ||
|
||
if self.is_decoder: | ||
past_key_value = (key_layer, value_layer) | ||
|
||
is_causal = ( | ||
True if self.is_decoder and not is_cross_attention and attention_mask is None and tgt_len > 1 else False | ||
) | ||
|
||
attn_output = FusedSDPA.apply( | ||
query_layer, key_layer, value_layer, attention_mask, 0.0, is_causal, None, "fast", False | ||
) | ||
|
||
attn_output = attn_output.transpose(1, 2) | ||
attn_output = attn_output.reshape(bsz, tgt_len, self.all_head_size) | ||
|
||
outputs = (attn_output,) | ||
if self.is_decoder: | ||
outputs = outputs + (past_key_value,) | ||
return outputs |