Skip to content

⚡️ Speed up method BlipImageProcessor.postprocess by 51% #11666

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 3 commits into
base: main
Choose a base branch
from

Conversation

misrasaurabh1
Copy link

📄 51% (0.51x) speedup for BlipImageProcessor.postprocess in src/diffusers/pipelines/blip_diffusion/blip_image_processing.py

⏱️ Runtime : 201 milliseconds 133 milliseconds (best of 27 runs)

📝 Explanation and details

Here’s a faster, more memory-efficient rewrite while preserving all return values and function signatures. The optimizations address.

  • Avoid unnecessary copying/conversion during numpy->PIL conversion
  • Remove redundant .cpu() calls when already on CPU
  • Optimize numpy array handling to avoid memory overhead
  • Only run squeeze when necessary and pull out constants where safe.

Optimizations made:

  • Avoided unnecessary .cpu() calls and ensured direct use of .contiguous() before .numpy() to avoid memory bottlenecks on non-contiguous tensors.
  • Used dictionary set-literal lookups for output_type (marginally faster for a fixed small set).
  • Removed needless Image.fromarray squeeze (use [..., 0] indexing, never triggers for RGB).
  • Used astype("uint8", copy=False) to avoid unnecessary array copying during data type conversion.
  • Used .clamp_() for in-place operations to reduce memory and allow for better memory reuse.
  • Moved size default initialization outside the function call for better micro-optimization and readability.

No changes to logic, outputs, or external side-effects or comments.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 84 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests Details
import pytest  # used for our unit tests
import torch
from PIL import Image
from src.diffusers.pipelines.blip_diffusion.blip_image_processing import \
    BlipImageProcessor

# function to test (already imported as BlipImageProcessor with postprocess)

# ---------------------------
# Unit tests for postprocess
# ---------------------------

# Helper function to create a batch of images as torch tensors
def make_tensor(batch_size, channels, height, width, fill_value=None, dtype=torch.float32):
    """
    Utility to create a batch of images as a torch tensor.
    If fill_value is not None, fills the tensor with that value.
    """
    shape = (batch_size, channels, height, width)
    if fill_value is not None:
        return torch.full(shape, fill_value, dtype=dtype)
    # Otherwise, random values in [-1, 1]
    return (torch.rand(shape, dtype=dtype) - 0.5) * 2

# 1. Basic Test Cases

def test_postprocess_pt_output_type_returns_tensor():
    # Test that output_type='pt' returns a torch.Tensor with values in [0,1]
    processor = BlipImageProcessor()
    sample = make_tensor(2, 3, 16, 16)
    codeflash_output = processor.postprocess(sample, output_type="pt"); out = codeflash_output

def test_postprocess_np_output_type_returns_numpy():
    # Test that output_type='np' returns a numpy array with correct shape and dtype
    processor = BlipImageProcessor()
    sample = make_tensor(1, 3, 8, 8)
    codeflash_output = processor.postprocess(sample, output_type="np"); out = codeflash_output

def test_postprocess_pil_output_type_returns_pil_images():
    # Test that output_type='pil' returns a list of PIL.Image.Image objects
    processor = BlipImageProcessor()
    sample = make_tensor(3, 3, 10, 10)
    codeflash_output = processor.postprocess(sample, output_type="pil"); out = codeflash_output
    for img in out:
        pass

def test_postprocess_grayscale_image():
    # Test grayscale (1 channel) image returns mode "L" PIL images
    processor = BlipImageProcessor()
    sample = make_tensor(2, 1, 7, 5)
    codeflash_output = processor.postprocess(sample, output_type="pil"); out = codeflash_output
    for img in out:
        pass

def test_postprocess_single_image_batch():
    # Test single image (batch size 1) returns a list of one PIL image
    processor = BlipImageProcessor()
    sample = make_tensor(1, 3, 12, 12)
    codeflash_output = processor.postprocess(sample, output_type="pil"); out = codeflash_output

def test_postprocess_value_range_mapping():
    # Test that input values of -1 and 1 are mapped to 0 and 1 after postprocess
    processor = BlipImageProcessor()
    sample = torch.tensor([[[[-1.0, 1.0], [0.0, 0.5]]]])
    # shape: (1,1,2,2)
    codeflash_output = processor.postprocess(sample, output_type="pt"); out = codeflash_output
    # -1 -> 0, 1 -> 1, 0 -> 0.5, 0.5 -> 0.75
    expected = torch.tensor([[[[0.0, 1.0], [0.5, 0.75]]]])

# 2. Edge Test Cases

def test_postprocess_invalid_output_type():
    # Test that an invalid output_type raises ValueError
    processor = BlipImageProcessor()
    sample = make_tensor(1, 3, 8, 8)
    with pytest.raises(ValueError):
        processor.postprocess(sample, output_type="badtype")

def test_postprocess_empty_batch():
    # Test that an empty batch (batch size 0) returns an empty list for PIL/np, tensor for pt
    processor = BlipImageProcessor()
    sample = make_tensor(0, 3, 8, 8)
    codeflash_output = processor.postprocess(sample, output_type="pt"); out_pt = codeflash_output
    codeflash_output = processor.postprocess(sample, output_type="np"); out_np = codeflash_output
    codeflash_output = processor.postprocess(sample, output_type="pil"); out_pil = codeflash_output

def test_postprocess_single_pixel_image():
    # Test 1x1 image (single pixel)
    processor = BlipImageProcessor()
    sample = make_tensor(1, 3, 1, 1)
    codeflash_output = processor.postprocess(sample, output_type="pil"); out = codeflash_output

def test_postprocess_max_min_values_clamping():
    # Test that values outside [-1, 1] are clamped correctly after postprocess
    processor = BlipImageProcessor()
    # Values: -10, 10, 0
    sample = torch.tensor([[[[-10.0, 10.0, 0.0]]]])
    codeflash_output = processor.postprocess(sample, output_type="pt"); out = codeflash_output
    # -10 -> 0, 10 -> 1, 0 -> 0.5
    expected = torch.tensor([[[[0.0, 1.0, 0.5]]]])

def test_postprocess_non_float_tensor():
    # Test that integer tensors are converted to float and processed correctly
    processor = BlipImageProcessor()
    sample = torch.ones((2, 3, 4, 4), dtype=torch.int32)
    codeflash_output = processor.postprocess(sample, output_type="pt"); out = codeflash_output

def test_postprocess_cpu_gpu_consistency():
    # Test that running on cpu and cuda (if available) gives the same result
    processor = BlipImageProcessor()
    sample = make_tensor(1, 3, 8, 8)
    codeflash_output = processor.postprocess(sample, output_type="pt"); out_cpu = codeflash_output
    if torch.cuda.is_available():
        sample_cuda = sample.cuda()
        codeflash_output = processor.postprocess(sample_cuda, output_type="pt"); out_cuda = codeflash_output

def test_postprocess_large_channel_number():
    # Test with a large number of channels (e.g., 10) for pt/np outputs
    processor = BlipImageProcessor()
    sample = make_tensor(1, 10, 5, 5)
    codeflash_output = processor.postprocess(sample, output_type="pt"); out_pt = codeflash_output
    codeflash_output = processor.postprocess(sample, output_type="np"); out_np = codeflash_output
    # PIL output should fail (since numpy_to_pil expects 1 or 3 channels)
    with pytest.raises(ValueError):
        processor.postprocess(sample, output_type="pil")

def test_postprocess_single_channel_np_output():
    # Test that single-channel image returns correct shape for np output
    processor = BlipImageProcessor()
    sample = make_tensor(2, 1, 6, 6)
    codeflash_output = processor.postprocess(sample, output_type="np"); out = codeflash_output

# 3. Large Scale Test Cases

def test_postprocess_large_batch():
    # Test with a large batch size (e.g., 512)
    processor = BlipImageProcessor()
    batch_size = 512
    sample = make_tensor(batch_size, 3, 8, 8)
    codeflash_output = processor.postprocess(sample, output_type="pil"); out_pil = codeflash_output
    for img in out_pil[:5]:  # spot check first 5
        pass

def test_postprocess_large_image():
    # Test with a large image size (e.g., 128x128, batch size 2)
    processor = BlipImageProcessor()
    sample = make_tensor(2, 3, 128, 128)
    codeflash_output = processor.postprocess(sample, output_type="np"); out_np = codeflash_output
    codeflash_output = processor.postprocess(sample, output_type="pil"); out_pil = codeflash_output
    for img in out_pil:
        pass

def test_postprocess_maximum_allowed_tensor_size():
    # Test with a tensor near the 100MB limit: batch=16, 3x256x256 float32 = ~12.6MB
    processor = BlipImageProcessor()
    batch_size = 16
    channels = 3
    height = 256
    width = 256
    sample = make_tensor(batch_size, channels, height, width)
    codeflash_output = processor.postprocess(sample, output_type="np"); out_np = codeflash_output
    codeflash_output = processor.postprocess(sample, output_type="pil"); out_pil = codeflash_output
    for img in out_pil[:3]:  # spot check
        pass

def test_postprocess_all_zero_input():
    # Test that all-zero input returns all 0.5 after postprocess
    processor = BlipImageProcessor()
    sample = torch.zeros((4, 3, 8, 8))
    codeflash_output = processor.postprocess(sample, output_type="pt"); out = codeflash_output

def test_postprocess_all_one_input():
    # Test that all-one input returns all 1.0 after postprocess
    processor = BlipImageProcessor()
    sample = torch.ones((3, 3, 8, 8))
    codeflash_output = processor.postprocess(sample, output_type="pt"); out = codeflash_output
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

from typing import Dict, List, Optional, Union

# imports
import pytest  # used for our unit tests
import torch
from PIL import Image
from src.diffusers.pipelines.blip_diffusion.blip_image_processing import \
    BlipImageProcessor
from transformers.image_processing_utils import (BaseImageProcessor,
                                                 get_size_dict)
from transformers.image_utils import (OPENAI_CLIP_MEAN, OPENAI_CLIP_STD,
                                      PILImageResampling)

# ----------- UNIT TESTS BEGIN HERE ------------

# Helper function to create a random tensor of the required shape and dtype
def make_tensor(batch, channels, height, width, dtype=torch.float32, fill_value=None):
    if fill_value is not None:
        t = torch.full((batch, channels, height, width), fill_value, dtype=dtype)
    else:
        t = torch.rand((batch, channels, height, width), dtype=dtype) * 2 - 1  # in [-1,1]
    return t

@pytest.fixture
def processor():
    # Provide a default processor instance for tests
    return BlipImageProcessor()

# ---------------- Basic Test Cases ----------------

def test_postprocess_pt_output_type(processor):
    # Test that output_type="pt" returns a torch.Tensor with expected value range and shape
    x = make_tensor(2, 3, 16, 16)
    codeflash_output = processor.postprocess(x, output_type="pt"); result = codeflash_output

def test_postprocess_np_output_type(processor):
    # Test that output_type="np" returns a numpy ndarray with correct shape and value range
    x = make_tensor(1, 3, 8, 8)
    codeflash_output = processor.postprocess(x, output_type="np"); result = codeflash_output

def test_postprocess_pil_output_type(processor):
    # Test that output_type="pil" returns a list of PIL Images with correct size and mode
    x = make_tensor(2, 3, 10, 12)
    codeflash_output = processor.postprocess(x, output_type="pil"); result = codeflash_output
    for img in result:
        pass

def test_postprocess_single_channel_grayscale(processor):
    # Test that a single channel (grayscale) image returns PIL images in L mode
    x = make_tensor(1, 1, 5, 7)
    codeflash_output = processor.postprocess(x, output_type="pil"); result = codeflash_output
    img = result[0]

def test_postprocess_batch_size_one(processor):
    # Test that batch size 1 works for all output types
    x = make_tensor(1, 3, 4, 4)
    codeflash_output = processor.postprocess(x, output_type="pt"); pt = codeflash_output
    codeflash_output = processor.postprocess(x, output_type="np"); np_out = codeflash_output
    codeflash_output = processor.postprocess(x, output_type="pil"); pil = codeflash_output

# ---------------- Edge Test Cases ----------------

def test_postprocess_invalid_output_type(processor):
    # Test that an invalid output_type raises ValueError
    x = make_tensor(1, 3, 4, 4)
    with pytest.raises(ValueError):
        processor.postprocess(x, output_type="foo")

def test_postprocess_min_max_values(processor):
    # Test that input values at -1 and 1 are mapped to 0 and 1 after denormalization
    x = torch.tensor([
        [[[-1.0, 1.0], [0.0, -0.5]]],  # shape (1,1,2,2)
    ])
    codeflash_output = processor.postprocess(x, output_type="np"); result = codeflash_output
    # Denormalize: (x/2 + 0.5) => [-1,1] -> [0,1]
    expected = (((x / 2) + 0.5).clamp(0, 1)).cpu().permute(0, 2, 3, 1).numpy()

def test_postprocess_non_contiguous_tensor(processor):
    # Test that a non-contiguous tensor is handled correctly
    x = make_tensor(2, 3, 8, 8)
    x_t = x.transpose(2, 3)  # make non-contiguous
    codeflash_output = processor.postprocess(x_t, output_type="pt"); result = codeflash_output

def test_postprocess_on_cuda_if_available(processor):
    # Test that CUDA tensors are handled (if CUDA is available)
    if torch.cuda.is_available():
        x = make_tensor(1, 3, 8, 8).cuda()
        codeflash_output = processor.postprocess(x, output_type="pt"); result = codeflash_output

def test_postprocess_single_pixel_image(processor):
    # Test that a single pixel image is handled correctly
    x = make_tensor(1, 3, 1, 1)
    codeflash_output = processor.postprocess(x, output_type="pil"); pil = codeflash_output
    img = pil[0]

def test_postprocess_empty_batch(processor):
    # Test that an empty batch (batch size 0) returns empty outputs
    x = make_tensor(0, 3, 8, 8)
    codeflash_output = processor.postprocess(x, output_type="pt"); pt = codeflash_output
    codeflash_output = processor.postprocess(x, output_type="np"); np_out = codeflash_output
    codeflash_output = processor.postprocess(x, output_type="pil"); pil = codeflash_output

def test_postprocess_large_value_range(processor):
    # Test that values outside [-1,1] are clamped correctly
    x = torch.tensor([[[[2.0, -2.0], [10.0, -10.0]]]])  # shape (1,1,2,2)
    codeflash_output = processor.postprocess(x, output_type="np"); result = codeflash_output

def test_postprocess_different_dtypes(processor):
    # Test that float16 and float64 tensors are handled
    for dtype in [torch.float16, torch.float64]:
        x = make_tensor(1, 3, 8, 8, dtype=dtype)
        codeflash_output = processor.postprocess(x, output_type="pt"); pt = codeflash_output

def test_postprocess_grayscale_and_rgb_batch(processor):
    # Test that a batch of both grayscale and RGB images is not supported (should raise)
    # The function expects all images in a batch to have the same number of channels
    x = torch.cat([
        make_tensor(1, 1, 4, 4),
        make_tensor(1, 3, 4, 4)
    ], dim=0)
    # This should raise a RuntimeError due to mismatched channels
    with pytest.raises(RuntimeError):
        processor.postprocess(x, output_type="pil")

# ---------------- Large Scale Test Cases ----------------

def test_postprocess_large_batch(processor):
    # Test with a large batch size, but within memory limits
    batch_size = 64
    x = make_tensor(batch_size, 3, 32, 32)
    codeflash_output = processor.postprocess(x, output_type="pil"); pil = codeflash_output
    for img in pil:
        pass

def test_postprocess_large_image(processor):
    # Test with a single large image (e.g., 512x512, 3 channels)
    x = make_tensor(1, 3, 512, 512)
    codeflash_output = processor.postprocess(x, output_type="pil"); pil = codeflash_output
    img = pil[0]

def test_postprocess_max_elements(processor):
    # Test with a tensor close to the 100MB limit
    # 100MB / 4 bytes per float32 = 25,000,000 elements
    # For 3x256x256 images: 3*256*256 = 196608 per image
    # 25,000,000 // 196608 = ~127 images
    batch_size = 100  # Keep well below the limit for safety
    x = make_tensor(batch_size, 3, 256, 256)
    codeflash_output = processor.postprocess(x, output_type="pil"); pil = codeflash_output
    for img in pil:
        pass

def test_postprocess_large_grayscale_batch(processor):
    # Test with a large batch of grayscale images
    batch_size = 100
    x = make_tensor(batch_size, 1, 64, 64)
    codeflash_output = processor.postprocess(x, output_type="pil"); pil = codeflash_output
    for img in pil:
        pass

def test_postprocess_large_np_output(processor):
    # Test that np output for a large batch is correct
    batch_size = 200
    x = make_tensor(batch_size, 3, 16, 16)
    codeflash_output = processor.postprocess(x, output_type="np"); np_out = codeflash_output
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

Codeflash

codeflash-ai bot and others added 3 commits May 27, 2025 02:27
Here’s a **faster, more memory-efficient rewrite** while preserving all return values and function signatures. The optimizations address.

- **Avoid unnecessary copying/conversion** during numpy->PIL conversion
- **Remove redundant `.cpu()` calls** when already on CPU
- **Optimize numpy array handling** to avoid memory overhead
- **Reduce Python loop overhead** by using list comprehensions
- Only run squeeze when necessary and pull out constants where safe.

Here’s the improved version.



**Optimizations made:**
- Avoided unnecessary `.cpu()` calls and ensured direct use of `.contiguous()` before `.numpy()` to avoid memory bottlenecks on non-contiguous tensors.
- Used dictionary set-literal lookups for output_type (marginally faster for a fixed small set).
- Removed needless Image.fromarray squeeze (use `[..., 0]` indexing, never triggers for RGB).
- Used `astype("uint8", copy=False)` to avoid unnecessary array copying during data type conversion.
- Used `.clamp_()` for in-place operations to reduce memory and allow for better memory reuse.
- Moved `size` default initialization outside the function call for better micro-optimization and readability.

**No changes to logic, outputs, or external side-effects or comments.**
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant