Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix use_lu_lambdas and use_karras_sigmas with beta_schedule=squaredcos_cap_v2 in DPMSolverMultistepScheduler #10740

Open
wants to merge 2 commits into
base: main
Choose a base branch
from

Conversation

hlky
Copy link
Collaborator

@hlky hlky commented Feb 6, 2025

What does this PR do?

.round() was applied with use_lu_lambdas and use_karras_sigmas, this seems to give incorrect _step_index from index_for_timestep as multiple timesteps are the same.

Reproduction

from diffusers import DPMSolverMultistepScheduler
import torch


def dummy_model():
    def model(sample, t, *args):
        # if t is a tensor, match the number of dimensions of sample
        if isinstance(t, torch.Tensor):
            num_dims = len(sample.shape)
            # pad t with 1s to match num_dims
            t = t.reshape(-1, *(1,) * (num_dims - 1)).to(
                sample.device, dtype=sample.dtype
            )

        return sample * t / (t + 1)

    return model


def dummy_sample_deter():
    batch_size = 4
    num_channels = 3
    height = 8
    width = 8

    num_elems = batch_size * num_channels * height * width
    sample = torch.arange(num_elems)
    sample = sample.reshape(num_channels, height, width, batch_size)
    sample = sample / num_elems
    sample = sample.permute(3, 0, 1, 2)

    return sample


scheduler = DPMSolverMultistepScheduler(
    **{
        "num_train_timesteps": 1000,
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "squaredcos_cap_v2",
        "solver_order": 2,
        "prediction_type": "epsilon",
        "dynamic_thresholding_ratio": 0.995,
        "sample_max_value": 1.0,
        "algorithm_type": "dpmsolver++",
        "solver_type": "midpoint",
        "lower_order_final": True,
        "use_karras_sigmas": True,
        # "use_lu_lambdas": True,
        "flow_shift": 1.0,
        "final_sigmas_type": "zero",
        "timestep_spacing": "linspace",
        "steps_offset": 0,
    }
)
scheduler.set_timesteps(20)
scheduler.timesteps, scheduler.sigmas, scheduler.timesteps.shape, scheduler.sigmas.shape

model = dummy_model()
sample = dummy_sample_deter()

generator = torch.manual_seed(0)

for i, t in enumerate(scheduler.timesteps):
    print(scheduler._step_index)
    residual = model(sample, t)
    sample = scheduler.step(residual, t, sample, generator=generator).prev_sample

`use_karras_sigmas`

(tensor([999, 998, 998, 998, 998, 998, 998, 998, 998, 997, 996, 994, 989, 978,
         949, 867, 623, 221,  33,   0]),
 tensor([2.0291e+04, 1.4548e+04, 1.0258e+04, 7.1015e+03, 4.8171e+03, 3.1939e+03,
         2.0641e+03, 1.2957e+03, 7.8684e+02, 4.5987e+02, 2.5703e+02, 1.3628e+02,
         6.7820e+01, 3.1240e+01, 1.3064e+01, 4.8251e+00, 1.5101e+00, 3.7478e-01,
         6.5665e-02, 6.4271e-03, 0.0000e+00]),
 torch.Size([20]),
 torch.Size([21]))

`use_lu_lambdas`

(tensor([999, 998, 998, 998, 998, 997, 995, 991, 981, 961, 916, 820, 639, 393,
         195,  86,  35,  12,   3,   0]),
 tensor([2.0291e+04, 9.2309e+03, 4.1993e+03, 1.9103e+03, 8.6904e+02, 3.9534e+02,
         1.7985e+02, 8.1815e+01, 3.7219e+01, 1.6932e+01, 7.7024e+00, 3.5040e+00,
         1.5940e+00, 7.2514e-01, 3.2988e-01, 1.5007e-01, 6.8268e-02, 3.1056e-02,
         1.4128e-02, 6.4271e-03, 0.0000e+00]),
 torch.Size([20]),
 torch.Size([21]))

Fixes #10738

Who can review?

Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
members/contributors who may be interested in your PR.

@yiyixuxu @vladmandic

…redcos_cap_v2` in `DPMSolverMultistepScheduler`
@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

@yiyixuxu
Copy link
Collaborator

yiyixuxu commented Feb 6, 2025

I use a test like this for scheduler changes, can you run for relevant configs (need to add use_lu_lambdas?) & affected schedulers (here only DPMSolverMultistepScheduler)?

need to make sure outputs are same as in main (or better if it is expected to change)

# slow test for dpm
import torch
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerDiscreteScheduler, DEISMultistepScheduler, HeunDiscreteScheduler, UniPCMultistepScheduler
import os

from diffusers.utils import make_image_grid

config_zero = {"final_sigmas_type":"zero"}

schedulers = {
    "Euler": {
        "zero": (EulerDiscreteScheduler, config_zero),
     },
     "Euler_K": {
        "zero": (EulerDiscreteScheduler, {"use_karras_sigmas": True, **config_zero}),
     },
     "Euler_EXP": {
        "zero": (EulerDiscreteScheduler, {"use_exponential_sigmas": True, **config_zero}),
     },
     "Euler_B": {
        "zero": (EulerDiscreteScheduler, {"use_beta_sigmas": True, **config_zero}),
     },
    "DEIS": {
        "zero": (DEISMultistepScheduler, config_zero),
     },
     "DEIS_K": {
        "zero": (DEISMultistepScheduler, {"use_karras_sigmas": True, **config_zero}),
     },
     "DEIS_EXP": {
        "zero": (DEISMultistepScheduler, {"use_exponential_sigmas": True, **config_zero}),
     },
     "DEIS_B": {
        "zero": (DEISMultistepScheduler, {"use_beta_sigmas": True, **config_zero}),
     },
    "Heun": {
        "zero": (HeunDiscreteScheduler, config_zero),
     },
     "Heun_K": {
        "zero": (HeunDiscreteScheduler, {"use_karras_sigmas": True, **config_zero}),
     },
     "Heun_EXP": {
        "zero": (HeunDiscreteScheduler, {"use_exponential_sigmas": True, **config_zero}),
     },
     "Heun_B": {
        "zero": (HeunDiscreteScheduler, {"use_beta_sigmas": True, **config_zero}),
     },
    "UniP": {
        "zero": (UniPCMultistepScheduler, config_zero),
     },
     "UniP_K": {
        "zero": (UniPCMultistepScheduler, {"use_karras_sigmas": True, **config_zero}),
     },
     "UniP_EXP": {
        "zero": (UniPCMultistepScheduler, {"use_exponential_sigmas": True, **config_zero}),
     },
     "UniP_B": {
        "zero": (UniPCMultistepScheduler, {"use_beta_sigmas": True, **config_zero}),
     },
}


## Test SD-XL

# model_id = "stabilityai/stable-diffusion-xl-base-1.0"
model_id = "frankjoshua/juggernautXL_version6Rundiffusion"
pipe = StableDiffusionXLPipeline.from_pretrained(
    model_id,
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16",
    add_watermarker=False)
pipe = pipe.to('cuda')
prompt = "Adorable infant playing with a variety of colorful rattle toys."
save_dir = './test_juggernautxl_baby_main'

if not os.path.exists(save_dir):
    os.mkdir(save_dir)

steps = 25

params = {
    "prompt": [prompt],
    "num_inference_steps": steps,
    "guidance_scale": 7,
}
for scheduler_name in schedulers.keys():
    for seed in [123]:
        out_imgs = []
        scheduler_configs = schedulers[scheduler_name]
        for scheduler_config_name in scheduler_configs.keys():
            generator = torch.Generator(device='cuda').manual_seed(seed)
            scheduler = scheduler_configs[scheduler_config_name][0].from_pretrained(
                model_id,
                subfolder="scheduler",
                **scheduler_configs[scheduler_config_name][1],
            )
            pipe.scheduler = scheduler

            img = pipe(**params, generator=generator).images[0]
            out_imgs.append(img)
        out_img = make_image_grid(out_imgs, rows=1, cols=2)    
        out_img.save(os.path.join(save_dir, f"seed_{seed}_steps_{steps}_{scheduler_name}.png"))

@hlky
Copy link
Collaborator Author

hlky commented Feb 7, 2025

timesteps for linear and scaled_linear would change and without round in some cases would end with 0, 0 instead of 1, 0, it's sort of the opposite issue with squaredcos_cap_v2 where round increase the first timesteps to 999, 999 instead of 999, 998 which is what causes the issue in index_for_timestep, so I've changed this PR to only round for linear and scaled_linear this keeps the existing behavior for those beta_schedule types and fixes squaredcos_cap_v2. WDYT?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Scheduler sigma index out-of-bounds
3 participants