Skip to content

Learning to Track: Online Multi-Object Tracking by Decision Making

License

MIT, GPL-3.0 licenses found

Licenses found

MIT
LICENSE
GPL-3.0
LICENSE_TLD
Notifications You must be signed in to change notification settings

heurainbow/MDP_Tracking

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning to Track: Online Multi-Object Tracking by Decision Making

Created by Yu Xiang at CVGL, Stanford University.

Introduction

MDP_Tracking is a online multi-object tracking framework based on Markov Decision Processes (MDPs).

http://cvgl.stanford.edu/projects/MDP_tracking/

License

MDP_Tracking is released under the MIT License (refer to the LICENSE file for details).

Citation

If you find MDP_Tracking useful in your research, please consider citing:

@inproceedings{xiang2015learning,
    Author = {Xiang, Yu and Alahi, Alexandre and Savarese, Silvio},
    Title = {Learning to Track: Online Multi-Object Tracking by Decision Making},
    Booktitle = {International Conference on Computer Vision (ICCV)},
    Year = {2015}
}

Usage

  1. Download the 2D MOT benchmark (data and development kit) from https://motchallenge.net/data/2D_MOT_2015/

  2. Set the path of the MOT dataset in global.m

  3. Run compile.m. OpenCV is needed.

  4. For validataion, use MOT_cross_validation.m

  5. For testing, use MOT_test.m

Contact

If you find any bug or issue of the software, please contact yuxiang at umich dot edu

About

Learning to Track: Online Multi-Object Tracking by Decision Making

Resources

License

MIT, GPL-3.0 licenses found

Licenses found

MIT
LICENSE
GPL-3.0
LICENSE_TLD

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • MATLAB 87.8%
  • C++ 12.2%