Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Face recognition PR #137

Open
wants to merge 12 commits into
base: dev
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
167 changes: 167 additions & 0 deletions community_projects/face_recognition/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,167 @@
# Face Recognition System

This project is a face recognition system built using Python, Flask, and LanceDB. It provides a web interface for managing face recognition data, including adding, updating, and deleting persons and their associated images. The system also supports real-time face recognition using GStreamer pipelines.

---

## Features

- **Web Interface**: Manage persons, images, and thresholds via a user-friendly web interface.
- **Real-Time Face Recognition**: Detect and recognize faces in real-time using GStreamer pipelines.
- **Database Management**: Store and manage face embeddings and metadata using LanceDB.
- **Telegram Notifications**: Send alerts for detected faces via Telegram.
- **Visualization**: Visualize embeddings and confidence circles in a 2D plot.

---

## Prerequisites

- Python 3.8+
- Pipenv or virtualenv for dependency management
- Required Python libraries (see `requirements.txt`)
- GStreamer installed on the system
- LanceDB installed for database management

---

## Installation

1. Clone the repository:
```bash
git clone https://github.com/your-repo/face-recognition.git
cd face-recognition
```

2. Install dependencies:
```bash
pip install -r requirements.txt
```

3. Install GStreamer:
```bash
sudo apt-get install gstreamer1.0-tools gstreamer1.0-plugins-base gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly
```

4. Set up the database:
```bash
python -c "from db_handler import init_database; init_database()"
```

5. Download resources:
```bash
chmod +x download_resources.sh
./download_resources.sh --all
```

---

## Usage

### Run the Web Application

1. Start the Flask web server:
```bash
python web/web_app.py
```

2. Open your browser and navigate to:
```
http://localhost:5002
```

### Run the Face Recognition Pipeline

1. Start the GStreamer pipeline:
```bash
python app_db.py
```

2. Choose the mode:
- `run`: Real-time face recognition
- `run-save`: Save new faces detected
- `train`: Train the system with new images
- `delete`: Clear the database

---

## Web Interface

### Features

- **View Persons**: Displays all persons in the database with their images and metadata.
- **Update Name**: Modify the name of a person.
- **Delete Image**: Remove a specific image associated with a person.
- **Update Threshold**: Adjust the classification confidence threshold for a person.
- **Delete Person**: Remove a person and all their associated data.

---

## Telegram Notifications

- Configure the `TELEGRAM_TOKEN` and `TELEGRAM_CHAT_ID` in `app_db.py` to enable Telegram notifications.
- Notifications are sent when a face is detected, with an image and confidence score.

---

## File Structure

```
face-recognition/
├── web/
│ ├── templates/
│ │ └── index.html # Web interface template
│ ├── web_app.py # Flask web application
├── resources/
│ ├── train/ # Training images
│ ├── faces/ # Detected face images
│ ├── database/ # LanceDB database
├── db_handler.py # Database management
├── app_db.py # GStreamer pipeline and Telegram integration
├── face_recognition_pipeline_db.py # GStreamer face recognition pipeline
├── download_resources.sh # Script to download resources
└── README.md # Documentation
```

---

## API Endpoints

### `GET /`
- **Description**: Displays the web interface.
- **Response**: HTML page with persons and their data.

### `POST /delete_image`
- **Description**: Deletes a specific image of a person.
- **Parameters**:
- `global_id`: The person's global ID.
- `face_id`: The ID of the face to delete.

### `POST /update_person_name`
- **Description**: Updates the name of a person.
- **Parameters**:
- `global_id`: The person's global ID.
- `new_name`: The new name.

### `POST /update_person_threshold`
- **Description**: Updates the classification confidence threshold for a person.
- **Parameters**:
- `global_id`: The person's global ID.
- `new_threshold`: The new threshold value.

---

## Troubleshooting

- **Database Issues**: Ensure the database is initialized using `init_database()`.
- **GStreamer Errors**: Verify GStreamer is installed and configured correctly.
- **Telegram Notifications**: Check the `TELEGRAM_TOKEN` and `TELEGRAM_CHAT_ID` values.

---

## Acknowledgments

- [Flask](https://flask.palletsprojects.com/)
- [GStreamer](https://gstreamer.freedesktop.org/)
- [LanceDB](https://lancedb.github.io/)
- [Telegram Bot API](https://core.telegram.org/bots/api)
```
86 changes: 86 additions & 0 deletions community_projects/face_recognition/app_db.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
# region imports
import datetime
from datetime import datetime, timedelta
from io import BytesIO

import gi
gi.require_version('Gst', '1.0')
from gi.repository import Gst
from PIL import Image
import telebot

import hailo
from hailo_apps_infra.hailo_rpi_common import app_callback_class
from face_recognition_pipeline_db import GStreamerFaceRecognitionApp
from db_handler import clear_table, init_database as db_init
# endregion

TELEGRAM_TOKEN = '7544346062:AAFSvYjJlvlby-rmJoUF3sWoXQh-7dxj2RY'
TELEGRAM_CHAT_ID = '7520285462'

class user_callbacks_class(app_callback_class):
def __init__(self):
super().__init__()
self.ids_msg_sent = {} # Dictionary to store the last sent time for each person
if TELEGRAM_TOKEN and TELEGRAM_CHAT_ID:
self.bot = telebot.TeleBot(TELEGRAM_TOKEN)
self.chat_id = TELEGRAM_CHAT_ID

def send_notification(self, name, global_id, distance, frame):
if not TELEGRAM_TOKEN or not TELEGRAM_CHAT_ID:
return
caption = None # Initialize caption with a default value
current_time = datetime.now()
last_sent_time = self.ids_msg_sent.get(global_id)
if last_sent_time is None or current_time - last_sent_time > timedelta(hours=1): # Check if the notification was sent more than an hour ago or never sent
if not name:
caption = "🚨 Unknown person detected!" # For Unknown person there is no classification hence no classification confidence
else:
if name == 'Unknown':
caption = f"Detected {global_id} (confidence: {(1 - distance):.2f})"
else:
caption = f"Detected {name} (confidence: {(1 - distance):.2f})"
if caption:
self.ids_msg_sent[global_id] = current_time # Update the last sent time
image = Image.fromarray(frame) # Open the image from the file path
image_byte_array = BytesIO() # Save the image to a byte stream
image.save(image_byte_array, format='PNG')
image_byte_array.seek(0)
try:
self.bot.send_photo(self.chat_id, image_byte_array, caption)
except Exception as e:
print(f'Error sending Telegram notification: {str(e)}')

def app_callback(pad, info, user_data):
buffer = info.get_buffer()
if buffer is None:
return Gst.PadProbeReturn.OK
user_data.increment()
string_to_print = f'Frame count: {user_data.get_count()}\n'
roi = hailo.get_roi_from_buffer(buffer)
detections = roi.get_objects_typed(hailo.HAILO_DETECTION)
for detection in detections:
label = detection.get_label()
detection_confidence = detection.get_confidence()
if label == "face":
track_id = 0
track = detection.get_objects_typed(hailo.HAILO_UNIQUE_ID)
if len(track) > 0:
track_id = track[0].get_id()
string_to_print += f'Detection track ID: {track_id} (Confidence: {detection_confidence:.1f})\n'
classifications = detection.get_objects_typed(hailo.HAILO_CLASSIFICATION)
if len(classifications) > 0:
for classification in classifications:
string_to_print += f'Classification: {classification.get_label()} (Confidence: {classification.get_confidence():.1f})'
# print(string_to_print)
return Gst.PadProbeReturn.OK

if __name__ == "__main__":
user_data = user_callbacks_class()
app = GStreamerFaceRecognitionApp(app_callback, user_data)
if app.options_menu.mode == 'delete':
db, tbl_persons = db_init()
clear_table()
print("All records deleted from the database")
else: # run, run-save, train
app.run()
60 changes: 60 additions & 0 deletions community_projects/face_recognition/compile_postprocess.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
#!/bin/bash

# Set the project directory name
PROJECT_DIR="."

# Enable strict error handling
set -e

# Check if Meson and Ninja are installed
if ! command -v meson &> /dev/null; then
echo "Error: Meson is not installed. Please install it and try again."
exit 1
fi

if ! command -v ninja &> /dev/null; then
echo "Error: Ninja is not installed. Please install it and try again."
exit 1
fi

# Get the build mode from the command line (default to release)
if [ "$1" = "debug" ]; then
BUILD_MODE="debug"
elif [ "$1" = "clean" ]; then
BUILD_MODE="release" # Default to release for cleanup
CLEAN=true
else
BUILD_MODE="release"
fi

# Set up the build directory
BUILD_DIR="$PROJECT_DIR/build.$BUILD_MODE"

# Handle cleanup
if [ "$CLEAN" = true ]; then
echo "Cleaning build directory..."
rm -rf "$BUILD_DIR"
exit 0
fi

# Create the build directory
mkdir -p "$BUILD_DIR"
cd "$BUILD_DIR"

# Configure the project with Meson if not already configured
if [ ! -f "build.ninja" ]; then
echo "Configuring project with Meson..."
meson setup .. --buildtype="$BUILD_MODE"
else
echo "Build directory already configured. Skipping setup."
fi

# Compile the project using Ninja with parallel jobs
echo "Building project with Ninja..."
ninja -j$(nproc)

# Install the project (optional)
echo "Installing project..."
ninja install

echo "Build completed successfully!"
73 changes: 73 additions & 0 deletions community_projects/face_recognition/cpp/arcface.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
/**
* Copyright (c) 2021-2022 Hailo Technologies Ltd. All rights reserved.
* Distributed under the LGPL license (https://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt)
**/
#include <vector>
#include "common/tensors.hpp"
#include "common/math.hpp"
#include "arcface.hpp"
#include "hailo_tracker.hpp"
#include "hailo_xtensor.hpp"
#include "xtensor/xadapt.hpp"
#include "xtensor/xarray.hpp"

#define OUTPUT_LAYER_NAME_RGB "arcface_mobilefacenet/fc1"
#define OUTPUT_LAYER_NAME_RGBA "arcface_mobilefacenet_rgbx/fc1"
#define OUTPUT_LAYER_NAME_NV12 "arcface_mobilefacenet/fc1"

std::string tracker_name = "hailo_face_tracker";

void arcface(HailoROIPtr roi, std::string layer_name)
{
if (!roi->has_tensors())
{
return;
}

std::string jde_tracker_name = tracker_name + "_" + roi->get_stream_id();
auto unique_ids = hailo_common::get_hailo_track_id(roi);
// Remove previous matrices
if(unique_ids.empty())
roi->remove_objects_typed(HAILO_MATRIX);
else
HailoTracker::GetInstance().remove_matrices_from_track(jde_tracker_name, unique_ids[0]->get_id());
// Convert the tensor to xarray.
auto tensor = roi->get_tensor(layer_name);
xt::xarray<float> embeddings = common::get_xtensor_float(tensor);

// vector normalization
auto normalized_embedding = common::vector_normalization(embeddings);

HailoMatrixPtr hailo_matrix = hailo_common::create_matrix_ptr(normalized_embedding);
if(unique_ids.empty())
{
roi->add_object(hailo_matrix);
}
else
{
// Update the tracker with the results
HailoTracker::GetInstance().add_object_to_track(jde_tracker_name,
unique_ids[0]->get_id(),
hailo_matrix);
}
}

void arcface_rgb(HailoROIPtr roi)
{
arcface(roi, OUTPUT_LAYER_NAME_RGB);
}

void arcface_rgba(HailoROIPtr roi)
{
arcface(roi, OUTPUT_LAYER_NAME_RGBA);
}

void arcface_nv12(HailoROIPtr roi)
{
arcface(roi, OUTPUT_LAYER_NAME_NV12);
}

void filter(HailoROIPtr roi)
{
arcface(roi, OUTPUT_LAYER_NAME_RGB);
}
Loading