Skip to content

Data driven modeling and automated discovery of dynamical systems for the SciML Scientific Machine Learning organization

License

Notifications You must be signed in to change notification settings

girochat/DataDrivenDiffEq.jl

This branch is 3 commits ahead of, 24 commits behind SciML/DataDrivenDiffEq.jl:master.

Folders and files

NameName
Last commit message
Last commit date
Apr 30, 2024
Mar 30, 2024
Nov 19, 2024
Sep 12, 2024
Mar 30, 2024
Feb 24, 2024
Nov 22, 2019
Nov 19, 2022
Oct 27, 2019
Jan 16, 2022
Aug 11, 2024
Feb 12, 2023

Repository files navigation

DataDrivenDiffEq.jl

Join the chat at https://julialang.zulipchat.com #sciml-bridged Global Docs DOI

codecov Build Status

ColPrac: Contributor's Guide on Collaborative Practices for Community Packages SciML Code Style

DataDrivenDiffEq.jl is a package in the SciML ecosystem for data-driven differential equation structural estimation and identification. These tools include automatically discovering equations from data and using this to simulate perturbed dynamics.

For information on using the package, see the stable documentation. Use the in-development documentation for the version of the documentation which contains the un-released features.

Quick Demonstration

## Generate some data by solving a differential equation
########################################################
using DataDrivenDiffEq
using ModelingToolkit
using OrdinaryDiffEq
using DataDrivenSparse
using LinearAlgebra

# Create a test problem
function lorenz(u, p, t)
    x, y, z = u

    ẋ = 10.0 * (y - x)
    ẏ = x * (28.0 - z) - y
    ż = x * y - (8 / 3) * z
    return [ẋ, ẏ, ż]
end

u0 = [1.0; 0.0; 0.0]
tspan = (0.0, 100.0)
dt = 0.1
prob = ODEProblem(lorenz, u0, tspan)
sol = solve(prob, Tsit5(), saveat = dt)

## Start the automatic discovery
ddprob = DataDrivenProblem(sol)

@variables t x(t) y(t) z(t)
u = [x; y; z]
basis = Basis(polynomial_basis(u, 5), u, iv = t)
opt = STLSQ(exp10.(-5:0.1:-1))
ddsol = solve(ddprob, basis, opt, options = DataDrivenCommonOptions(digits = 1))
println(get_basis(ddsol))
Explicit Result
Solution with 3 equations and 7 parameters.
Returncode: success
Sparsity: 7.0
L2 Norm Error: 26.7343984476783
AICC: 1.0013570199499398

Model ##Basis#366 with 3 equations
States : x(t) y(t) z(t)
Parameters : 7
Independent variable: t
Equations
Differential(t)(x(t)) = p₁*x(t) + p₂*y(t)
Differential(t)(y(t)) = p₃*x(t) + p₄*y(t) + p₅*x(t)*z(t)
Differential(t)(z(t)) = p₇*z(t) + p₆*x(t)*y(t)

Parameters:
   p₁ : -10.0
   p₂ : 10.0
   p₃ : 28.0
   p₄ : -1.0
   p₅ : -1.0
   p₆ : 1.0
   p₇ : -2.7

About

Data driven modeling and automated discovery of dynamical systems for the SciML Scientific Machine Learning organization

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Julia 100.0%