@@ -235,14 +235,12 @@ Returns a logical value that is true if the input matrix is square, and false ot
235
235
program demo_is_square
236
236
use stdlib_linalg, only: is_square
237
237
implicit none
238
- real :: A_true (2,2), A_false (3,2)
238
+ real :: A (2,2), B (3,2)
239
239
logical :: res
240
- A_true = reshape([1., 2., 3., 4.], shape(A_true))
241
- A_false = reshape([1., 2., 3., 4., 5., 6.], shape(A_false))
242
- res = is_square(A_true)
243
- !res = .true.
244
- res = is_square(A_false)
245
- !res = .false.
240
+ A = reshape([1., 2., 3., 4.], shape(A))
241
+ B = reshape([1., 2., 3., 4., 5., 6.], shape(B))
242
+ res = is_square(A) ! returns .true.
243
+ res = is_square(B) ! returns .false.
246
244
end program demo_is_square
247
245
```
248
246
@@ -275,14 +273,12 @@ Note that nonsquare matrices may be diagonal, so long as `a_ij = 0` when `i /= j
275
273
program demo_is_diagonal
276
274
use stdlib_linalg, only: is_diagonal
277
275
implicit none
278
- real :: A_true (2,2), A_false (2,2)
276
+ real :: A (2,2), B (2,2)
279
277
logical :: res
280
- A_true = reshape([1., 0., 0., 4.], shape(A_true))
281
- A_false = reshape([1., 0., 3., 4.], shape(A_false))
282
- res = is_diagonal(A_true)
283
- !res = .true.
284
- res = is_diagonal(A_false)
285
- !res = .false.
278
+ A = reshape([1., 0., 0., 4.], shape(A))
279
+ B = reshape([1., 0., 3., 4.], shape(B))
280
+ res = is_diagonal(A) ! returns .true.
281
+ res = is_diagonal(B) ! returns .false.
286
282
end program demo_is_diagonal
287
283
```
288
284
@@ -314,14 +310,12 @@ Returns a logical value that is true if the input matrix is symmetric, and false
314
310
program demo_is_symmetric
315
311
use stdlib_linalg, only: is_symmetric
316
312
implicit none
317
- real :: A_true (2,2), A_false (2,2)
313
+ real :: A (2,2), B (2,2)
318
314
logical :: res
319
- A_true = reshape([1., 3., 3., 4.], shape(A_true))
320
- A_false = reshape([1., 0., 3., 4.], shape(A_false))
321
- res = is_symmetric(A_true)
322
- !res = .true.
323
- res = is_symmetric(A_false)
324
- !res = .false.
315
+ A = reshape([1., 3., 3., 4.], shape(A))
316
+ B = reshape([1., 0., 3., 4.], shape(B))
317
+ res = is_symmetric(A) ! returns .true.
318
+ res = is_symmetric(B) ! returns .false.
325
319
end program demo_is_symmetric
326
320
```
327
321
@@ -353,14 +347,12 @@ Returns a logical value that is true if the input matrix is skew-symmetric, and
353
347
program demo_is_skew_symmetric
354
348
use stdlib_linalg, only: is_skew_symmetric
355
349
implicit none
356
- real :: A_true (2,2), A_false (2,2)
350
+ real :: A (2,2), B (2,2)
357
351
logical :: res
358
- A_true = reshape([0., -3., 3., 0.], shape(A_true))
359
- A_false = reshape([0., 3., 3., 0.], shape(A_false))
360
- res = is_skew_symmetric(A_true)
361
- !res = .true.
362
- res = is_skew_symmetric(A_false)
363
- !res = .false.
352
+ A = reshape([0., -3., 3., 0.], shape(A))
353
+ B = reshape([0., 3., 3., 0.], shape(B))
354
+ res = is_skew_symmetric(A) ! returns .true.
355
+ res = is_skew_symmetric(B) ! returns .false.
364
356
end program demo_is_skew_symmetric
365
357
```
366
358
@@ -392,14 +384,12 @@ Returns a logical value that is true if the input matrix is Hermitian, and false
392
384
program demo_is_hermitian
393
385
use stdlib_linalg, only: is_hermitian
394
386
implicit none
395
- complex :: A_true (2,2), A_false (2,2)
387
+ complex :: A (2,2), B (2,2)
396
388
logical :: res
397
- A_true = reshape([cmplx(1.,0.), cmplx(3.,-1.), cmplx(3.,1.), cmplx(4.,0.)], shape(A_true))
398
- A_false = reshape([cmplx(1.,0.), cmplx(3.,1.), cmplx(3.,1.), cmplx(4.,0.)], shape(A_false))
399
- res = is_hermitian(A_true)
400
- !res = .true.
401
- res = is_hermitian(A_false)
402
- !res = .false.
389
+ A = reshape([cmplx(1.,0.), cmplx(3.,-1.), cmplx(3.,1.), cmplx(4.,0.)], shape(A))
390
+ B = reshape([cmplx(1.,0.), cmplx(3.,1.), cmplx(3.,1.), cmplx(4.,0.)], shape(B))
391
+ res = is_hermitian(A) ! returns .true.
392
+ res = is_hermitian(B) ! returns .false.
403
393
end program demo_is_hermitian
404
394
```
405
395
@@ -435,14 +425,12 @@ Specifically, upper triangular matrices satisfy `a_ij = 0` when `j < i`, and low
435
425
program demo_is_triangular
436
426
use stdlib_linalg, only: is_triangular
437
427
implicit none
438
- real :: A_true (3,3), A_false (3,3)
428
+ real :: A (3,3), B (3,3)
439
429
logical :: res
440
- A_true = reshape([1., 0., 0., 4., 5., 0., 7., 8., 9.], shape(A_true))
441
- A_false = reshape([1., 0., 3., 4., 5., 0., 7., 8., 9.], shape(A_false))
442
- res = is_triangular(A_true,'u')
443
- !res = .true.
444
- res = is_triangular(A_false,'u')
445
- !res = .false.
430
+ A = reshape([1., 0., 0., 4., 5., 0., 7., 8., 9.], shape(A))
431
+ B = reshape([1., 0., 3., 4., 5., 0., 7., 8., 9.], shape(B))
432
+ res = is_triangular(A,'u') ! returns .true.
433
+ res = is_triangular(B,'u') ! returns .false.
446
434
end program demo_is_triangular
447
435
```
448
436
@@ -478,13 +466,11 @@ Specifically, upper Hessenberg matrices satisfy `a_ij = 0` when `j < i-1`, and l
478
466
program demo_is_hessenberg
479
467
use stdlib_linalg, only: is_hessenberg
480
468
implicit none
481
- real :: A_true (3,3), A_false (3,3)
469
+ real :: A (3,3), B (3,3)
482
470
logical :: res
483
- A_true = reshape([1., 2., 0., 4., 5., 6., 7., 8., 9.], shape(A_true))
484
- A_false = reshape([1., 2., 3., 4., 5., 6., 7., 8., 9.], shape(A_false))
485
- res = is_hessenberg(A_true,'u')
486
- !res = .true.
487
- res = is_hessenberg(A_false,'u')
488
- !res = .false.
471
+ A = reshape([1., 2., 0., 4., 5., 6., 7., 8., 9.], shape(A))
472
+ B = reshape([1., 2., 3., 4., 5., 6., 7., 8., 9.], shape(B))
473
+ res = is_hessenberg(A,'u') ! returns .true.
474
+ res = is_hessenberg(B,'u') ! returns .false.
489
475
end program demo_is_hessenberg
490
476
```
0 commit comments