Skip to content

Commit ed42211

Browse files
committed
Change style of output comments in docs
1 parent 1a9ddb3 commit ed42211

File tree

1 file changed

+35
-49
lines changed

1 file changed

+35
-49
lines changed

doc/specs/stdlib_linalg.md

+35-49
Original file line numberDiff line numberDiff line change
@@ -235,14 +235,12 @@ Returns a logical value that is true if the input matrix is square, and false ot
235235
program demo_is_square
236236
use stdlib_linalg, only: is_square
237237
implicit none
238-
real :: A_true(2,2), A_false(3,2)
238+
real :: A(2,2), B(3,2)
239239
logical :: res
240-
A_true = reshape([1., 2., 3., 4.], shape(A_true))
241-
A_false = reshape([1., 2., 3., 4., 5., 6.], shape(A_false))
242-
res = is_square(A_true)
243-
!res = .true.
244-
res = is_square(A_false)
245-
!res = .false.
240+
A = reshape([1., 2., 3., 4.], shape(A))
241+
B = reshape([1., 2., 3., 4., 5., 6.], shape(B))
242+
res = is_square(A) ! returns .true.
243+
res = is_square(B) ! returns .false.
246244
end program demo_is_square
247245
```
248246

@@ -275,14 +273,12 @@ Note that nonsquare matrices may be diagonal, so long as `a_ij = 0` when `i /= j
275273
program demo_is_diagonal
276274
use stdlib_linalg, only: is_diagonal
277275
implicit none
278-
real :: A_true(2,2), A_false(2,2)
276+
real :: A(2,2), B(2,2)
279277
logical :: res
280-
A_true = reshape([1., 0., 0., 4.], shape(A_true))
281-
A_false = reshape([1., 0., 3., 4.], shape(A_false))
282-
res = is_diagonal(A_true)
283-
!res = .true.
284-
res = is_diagonal(A_false)
285-
!res = .false.
278+
A = reshape([1., 0., 0., 4.], shape(A))
279+
B = reshape([1., 0., 3., 4.], shape(B))
280+
res = is_diagonal(A) ! returns .true.
281+
res = is_diagonal(B) ! returns .false.
286282
end program demo_is_diagonal
287283
```
288284

@@ -314,14 +310,12 @@ Returns a logical value that is true if the input matrix is symmetric, and false
314310
program demo_is_symmetric
315311
use stdlib_linalg, only: is_symmetric
316312
implicit none
317-
real :: A_true(2,2), A_false(2,2)
313+
real :: A(2,2), B(2,2)
318314
logical :: res
319-
A_true = reshape([1., 3., 3., 4.], shape(A_true))
320-
A_false = reshape([1., 0., 3., 4.], shape(A_false))
321-
res = is_symmetric(A_true)
322-
!res = .true.
323-
res = is_symmetric(A_false)
324-
!res = .false.
315+
A = reshape([1., 3., 3., 4.], shape(A))
316+
B = reshape([1., 0., 3., 4.], shape(B))
317+
res = is_symmetric(A) ! returns .true.
318+
res = is_symmetric(B) ! returns .false.
325319
end program demo_is_symmetric
326320
```
327321

@@ -353,14 +347,12 @@ Returns a logical value that is true if the input matrix is skew-symmetric, and
353347
program demo_is_skew_symmetric
354348
use stdlib_linalg, only: is_skew_symmetric
355349
implicit none
356-
real :: A_true(2,2), A_false(2,2)
350+
real :: A(2,2), B(2,2)
357351
logical :: res
358-
A_true = reshape([0., -3., 3., 0.], shape(A_true))
359-
A_false = reshape([0., 3., 3., 0.], shape(A_false))
360-
res = is_skew_symmetric(A_true)
361-
!res = .true.
362-
res = is_skew_symmetric(A_false)
363-
!res = .false.
352+
A = reshape([0., -3., 3., 0.], shape(A))
353+
B = reshape([0., 3., 3., 0.], shape(B))
354+
res = is_skew_symmetric(A) ! returns .true.
355+
res = is_skew_symmetric(B) ! returns .false.
364356
end program demo_is_skew_symmetric
365357
```
366358

@@ -392,14 +384,12 @@ Returns a logical value that is true if the input matrix is Hermitian, and false
392384
program demo_is_hermitian
393385
use stdlib_linalg, only: is_hermitian
394386
implicit none
395-
complex :: A_true(2,2), A_false(2,2)
387+
complex :: A(2,2), B(2,2)
396388
logical :: res
397-
A_true = reshape([cmplx(1.,0.), cmplx(3.,-1.), cmplx(3.,1.), cmplx(4.,0.)], shape(A_true))
398-
A_false = reshape([cmplx(1.,0.), cmplx(3.,1.), cmplx(3.,1.), cmplx(4.,0.)], shape(A_false))
399-
res = is_hermitian(A_true)
400-
!res = .true.
401-
res = is_hermitian(A_false)
402-
!res = .false.
389+
A = reshape([cmplx(1.,0.), cmplx(3.,-1.), cmplx(3.,1.), cmplx(4.,0.)], shape(A))
390+
B = reshape([cmplx(1.,0.), cmplx(3.,1.), cmplx(3.,1.), cmplx(4.,0.)], shape(B))
391+
res = is_hermitian(A) ! returns .true.
392+
res = is_hermitian(B) ! returns .false.
403393
end program demo_is_hermitian
404394
```
405395

@@ -435,14 +425,12 @@ Specifically, upper triangular matrices satisfy `a_ij = 0` when `j < i`, and low
435425
program demo_is_triangular
436426
use stdlib_linalg, only: is_triangular
437427
implicit none
438-
real :: A_true(3,3), A_false(3,3)
428+
real :: A(3,3), B(3,3)
439429
logical :: res
440-
A_true = reshape([1., 0., 0., 4., 5., 0., 7., 8., 9.], shape(A_true))
441-
A_false = reshape([1., 0., 3., 4., 5., 0., 7., 8., 9.], shape(A_false))
442-
res = is_triangular(A_true,'u')
443-
!res = .true.
444-
res = is_triangular(A_false,'u')
445-
!res = .false.
430+
A = reshape([1., 0., 0., 4., 5., 0., 7., 8., 9.], shape(A))
431+
B = reshape([1., 0., 3., 4., 5., 0., 7., 8., 9.], shape(B))
432+
res = is_triangular(A,'u') ! returns .true.
433+
res = is_triangular(B,'u') ! returns .false.
446434
end program demo_is_triangular
447435
```
448436

@@ -478,13 +466,11 @@ Specifically, upper Hessenberg matrices satisfy `a_ij = 0` when `j < i-1`, and l
478466
program demo_is_hessenberg
479467
use stdlib_linalg, only: is_hessenberg
480468
implicit none
481-
real :: A_true(3,3), A_false(3,3)
469+
real :: A(3,3), B(3,3)
482470
logical :: res
483-
A_true = reshape([1., 2., 0., 4., 5., 6., 7., 8., 9.], shape(A_true))
484-
A_false = reshape([1., 2., 3., 4., 5., 6., 7., 8., 9.], shape(A_false))
485-
res = is_hessenberg(A_true,'u')
486-
!res = .true.
487-
res = is_hessenberg(A_false,'u')
488-
!res = .false.
471+
A = reshape([1., 2., 0., 4., 5., 6., 7., 8., 9.], shape(A))
472+
B = reshape([1., 2., 3., 4., 5., 6., 7., 8., 9.], shape(B))
473+
res = is_hessenberg(A,'u') ! returns .true.
474+
res = is_hessenberg(B,'u') ! returns .false.
489475
end program demo_is_hessenberg
490476
```

0 commit comments

Comments
 (0)