@@ -207,7 +207,7 @@ contains
207
207
pure function is_square_${t1[0]}$${k1}$(A) result(res)
208
208
${t1}$, intent(in) :: A(:,:)
209
209
logical :: res
210
- res = (size(A,1) .eq. size(A,2))
210
+ res = (size(A,1) == size(A,2))
211
211
end function is_square_${t1[0]}$${k1}$
212
212
#:endfor
213
213
@@ -224,13 +224,13 @@ contains
224
224
do j = 1, n !loop over all columns
225
225
o = min(j-1,m) !index of row above diagonal (or last row)
226
226
do i = 1, o !loop over rows above diagonal
227
- if (A(i,j) .ne. zero) then
227
+ if (A(i,j) /= zero) then
228
228
res = .false.
229
229
return
230
230
end if
231
231
end do
232
232
do i = o+2, m !loop over rows below diagonal
233
- if (A(i,j) .ne. zero) then
233
+ if (A(i,j) /= zero) then
234
234
res = .false.
235
235
return
236
236
end if
@@ -253,7 +253,7 @@ contains
253
253
n = size(A,1) !symmetric dimension of A
254
254
do j = 1, n !loop over all columns
255
255
do i = 1, j-1 !loop over all rows above diagonal
256
- if (A(i,j) .ne. A(j,i)) then
256
+ if (A(i,j) /= A(j,i)) then
257
257
res = .false.
258
258
return
259
259
end if
@@ -276,7 +276,7 @@ contains
276
276
n = size(A,1) !symmetric dimension of A
277
277
do j = 1, n !loop over all columns
278
278
do i = 1, j !loop over all rows above diagonal (and diagonal)
279
- if (A(i,j) .ne. -A(j,i)) then
279
+ if (A(i,j) /= -A(j,i)) then
280
280
res = .false.
281
281
return
282
282
end if
@@ -310,7 +310,7 @@ contains
310
310
n = size(A,1) !symmetric dimension of A
311
311
do j = 1, n !loop over all columns
312
312
do i = 1, j !loop over all rows above diagonal (and diagonal)
313
- if (A(i,j) .ne. conjg(A(j,i))) then
313
+ if (A(i,j) /= conjg(A(j,i))) then
314
314
res = .false.
315
315
return
316
316
end if
@@ -331,21 +331,21 @@ contains
331
331
zero = 0 !zero of relevant type
332
332
m = size(A,1)
333
333
n = size(A,2)
334
- if ((uplo .eq. 'u') .or. (uplo .eq. 'U')) then !check for upper triangularity
334
+ if ((uplo == 'u') .or. (uplo == 'U')) then !check for upper triangularity
335
335
do j = 1, n !loop over all columns
336
336
o = min(j-1,m) !index of row above diagonal (or last row)
337
337
do i = o+2, m !loop over rows below diagonal
338
- if (A(i,j) .ne. zero) then
338
+ if (A(i,j) /= zero) then
339
339
res = .false.
340
340
return
341
341
end if
342
342
end do
343
343
end do
344
- else if ((uplo .eq. 'l') .or. (uplo .eq. 'L')) then !check for lower triangularity
344
+ else if ((uplo == 'l') .or. (uplo == 'L')) then !check for lower triangularity
345
345
do j=1,n !loop over all columns
346
346
o = min(j-1,m) !index of row above diagonal (or last row)
347
347
do i=1,o !loop over rows above diagonal
348
- if (A(i,j) .ne. zero) then
348
+ if (A(i,j) /= zero) then
349
349
res = .false.
350
350
return
351
351
end if
@@ -370,21 +370,21 @@ contains
370
370
zero = 0 !zero of relevant type
371
371
m = size(A,1)
372
372
n = size(A,2)
373
- if ((uplo .eq. 'u') .or. (uplo .eq. 'U')) then !check for upper Hessenberg
373
+ if ((uplo == 'u') .or. (uplo == 'U')) then !check for upper Hessenberg
374
374
do j = 1, n !loop over all columns
375
375
o = min(j-2,m) !index of row two above diagonal (or last row)
376
376
do i = o+4, m !loop over rows two or more below main diagonal
377
- if (A(i,j) .ne. zero) then
377
+ if (A(i,j) /= zero) then
378
378
res = .false.
379
379
return
380
380
end if
381
381
end do
382
382
end do
383
- else if ((uplo .eq. 'l') .or. (uplo .eq. 'L')) then !check for lower Hessenberg
383
+ else if ((uplo == 'l') .or. (uplo == 'L')) then !check for lower Hessenberg
384
384
do j = 1, n !loop over all columns
385
385
o = min(j-2,m) !index of row two above diagonal (or last row)
386
386
do i = 1, o !loop over rows one or more above main diagonal
387
- if (A(i,j) .ne. zero) then
387
+ if (A(i,j) /= zero) then
388
388
res = .false.
389
389
return
390
390
end if
0 commit comments