-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
161 lines (122 loc) · 4.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import shutil
import json
import time
from apex import amp
import apex
import numpy as np
import torch.distributed as dist
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.optim.lr_scheduler import LambdaLR, StepLR
from torch.utils.data import DataLoader
from toolbox import MscCrossEntropyLoss
from toolbox import get_dataset
from toolbox import get_logger
from toolbox import get_model
from toolbox import averageMeter, runningScore
from toolbox import ClassWeight, save_ckpt
torch.manual_seed(123)
cudnn.benchmark = True
def run(args):
with open(args.config, 'r') as fp:
cfg = json.load(fp)
logdir = f'run/{time.strftime("%Y-%m-%d-%H-%M")}'
args.logdir = logdir
if not os.path.exists(logdir):
os.makedirs(logdir)
shutil.copy(args.config, logdir)
logger = get_logger(logdir)
if args.local_rank == 0:
logger.info(f'Conf | use logdir {logdir}')
model = get_model(cfg)
trainset, *testset = get_dataset(cfg)
device = torch.device('cuda')
args.distributed = False
if 'WORLD_SIZE' in os.environ:
args.distributed = int(os.environ['WORLD_SIZE']) > 1
if args.local_rank == 0:
print(f"WORLD_SIZE is {os.environ['WORLD_SIZE']}")
train_sampler = None
if args.distributed:
args.gpu = args.local_rank
torch.cuda.set_device(args.gpu)
torch.distributed.init_process_group(backend='nccl')
args.world_size = torch.distributed.get_world_size()
model = apex.parallel.convert_syncbn_model(model)
train_sampler = torch.utils.data.distributed.DistributedSampler(trainset)
model.to(device)
train_loader = DataLoader(trainset, batch_size=cfg['ims_per_gpu'], shuffle=(train_sampler is None),
num_workers=cfg['num_workers'], pin_memory=True, sampler=train_sampler)
params_list = model.parameters()
optimizer = torch.optim.Adam(params_list, lr=cfg['lr_start'], weight_decay=cfg['weight_decay'])
scheduler = LambdaLR(optimizer, lr_lambda=lambda ep: (1 - ep / cfg['epochs']) ** 0.9)
model, optimizer = amp.initialize(model, optimizer, opt_level=args.opt_level)
if args.distributed:
model = apex.parallel.DistributedDataParallel(model, delay_allreduce=True)
# class weight 计算
if hasattr(trainset, 'class_weight'):
print('using classweight in dataset')
class_weight = trainset.class_weight
else:
classweight = ClassWeight(cfg['class_weight'])
class_weight = classweight.get_weight(train_loader, cfg['n_classes'])
class_weight = torch.from_numpy(class_weight).float().to(device)
class_weight[cfg['id_unlabel']] = 0
# 损失函数 & 类别权重平衡 & 训练时ignore unlabel
criterion = MscCrossEntropyLoss(weight=class_weight).to(device)
# 指标 包含unlabel
train_loss_meter = averageMeter()
# 每个epoch迭代循环
for ep in range(cfg['epochs']):
if args.distributed:
train_sampler.set_epoch(ep)
# training
model.train()
train_loss_meter.reset()
for i, sample in enumerate(train_loader):
optimizer.zero_grad() # 梯度清零
################### train edit #######################
image = sample['image'].to(device)
label = sample['label'].to(device)
predict = model(image)
loss = criterion(predict, label)
####################################################
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
optimizer.step()
if args.distributed:
reduced_loss = loss.clone()
dist.all_reduce(reduced_loss, op=dist.ReduceOp.SUM)
reduced_loss /= args.world_size
else:
reduced_loss = loss
train_loss_meter.update(reduced_loss.item())
scheduler.step(ep)
if args.local_rank == 0:
logger.info(f'Iter | [{ep + 1:3d}/{cfg["epochs"]}] train loss={train_loss_meter.avg:.5f}')
save_ckpt(logdir, model)
save_ckpt(logdir, model)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description="config")
parser.add_argument(
"--config",
type=str,
default="configs/cityscape_drn_c_26.json",
help="Configuration file to use",
)
parser.add_argument(
"--local_rank",
type=int,
default=0,
)
parser.add_argument(
"--opt_level",
type=str,
default='O1',
)
args = parser.parse_args()
run(args)