-
Notifications
You must be signed in to change notification settings - Fork 8
SECO-94 completion part 2 #16
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
SECO-94 completion part 2 #16
Conversation
jira VULN-72 cve-pre CVE-2021-4204 commit-author Kumar Kartikeya Dwivedi <[email protected]> commit 3363bd0 upstream-diff Slight change due to previously backported commit 38f85a6 (bpf: Fix crash due to out of bounds access into reg2btf_ids.) Allow passing PTR_TO_CTX, if the kfunc expects a matching struct type, and punt to PTR_TO_MEM block if reg->type does not fall in one of PTR_TO_BTF_ID or PTR_TO_SOCK* types. This will be used by future commits to get access to XDP and TC PTR_TO_CTX, and pass various data (flags, l4proto, netns_id, etc.) encoded in opts struct passed as pointer to kfunc. For PTR_TO_MEM support, arguments are currently limited to pointer to scalar, or pointer to struct composed of scalars. This is done so that unsafe scenarios (like passing PTR_TO_MEM where PTR_TO_BTF_ID of in-kernel valid structure is expected, which may have pointers) are avoided. Since the argument checking happens basd on argument register type, it is not easy to ascertain what the expected type is. In the future, support for PTR_TO_MEM for kfunc can be extended to serve other usecases. The struct type whose pointer is passed in may have maximum nesting depth of 4, all recursively composed of scalars or struct with scalars. Future commits will add negative tests that check whether these restrictions imposed for kfunc arguments are duly rejected by BPF verifier or not. Signed-off-by: Kumar Kartikeya Dwivedi <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Link: https://lore.kernel.org/bpf/[email protected] (cherry picked from commit 3363bd0) Signed-off-by: Brett Mastbergen <[email protected]>
jira VULN-72 cve CVE-2021-4204 commit-author Daniel Borkmann <[email protected]> commit be80a1d Generalize the check_ctx_reg() helper function into a more generic named one so that it can be reused for other register types as well to check whether their offset is non-zero. No functional change. Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: John Fastabend <[email protected]> Acked-by: Alexei Starovoitov <[email protected]> (cherry picked from commit be80a1d) Signed-off-by: Brett Mastbergen <[email protected]>
I think this was because I was looking at how the |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The code looks fine to me - Thanks! |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM - Thanks!
jira VULN-72 jira VULN-7854 cve 2021-4204 cve 2022-48929 commit-author Kumar Kartikeya Dwivedi <[email protected]> commit 45ce4b4 upstream-diff Part of this upstream change was already backported, but because commit 3363bd0 ("bpf: Extend kfunc with PTR_TO_CTX, PTR_TO_MEM argument support") had not been backported at that time, the out of bound access it introduced was not fixed in that backport. Since we have now backported 3363bd0, we need to backport the remaining change from the upstream fix When commit e6ac245 ("bpf: Support bpf program calling kernel function") added kfunc support, it defined reg2btf_ids as a cheap way to translate the verifier reg type to the appropriate btf_vmlinux BTF ID, however commit c25b2ae ("bpf: Replace PTR_TO_XXX_OR_NULL with PTR_TO_XXX | PTR_MAYBE_NULL") moved the __BPF_REG_TYPE_MAX from the last member of bpf_reg_type enum to after the base register types, and defined other variants using type flag composition. However, now, the direct usage of reg->type to index into reg2btf_ids may no longer fall into __BPF_REG_TYPE_MAX range, and hence lead to out of bounds access and kernel crash on dereference of bad pointer. Fixes: c25b2ae ("bpf: Replace PTR_TO_XXX_OR_NULL with PTR_TO_XXX | PTR_MAYBE_NULL") Signed-off-by: Kumar Kartikeya Dwivedi <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Link: https://lore.kernel.org/bpf/[email protected] (cherry picked from commit 45ce4b4) Signed-off-by: Brett Mastbergen <[email protected]>
jira VULN-72 cve CVE-2021-4204 commit-author Daniel Borkmann <[email protected]> commit 6788ab2 Right now the assertion on check_ptr_off_reg() is only enforced for register types PTR_TO_CTX (and open coded also for PTR_TO_BTF_ID), however, this is insufficient since many other PTR_TO_* register types such as PTR_TO_FUNC do not handle/expect register offsets when passed to helper functions. Given this can slip-through easily when adding new types, make this an explicit allow-list and reject all other current and future types by default if this is encountered. Also, extend check_ptr_off_reg() to handle PTR_TO_BTF_ID as well instead of duplicating it. For PTR_TO_BTF_ID, reg->off is used for BTF to match expected BTF ids if struct offset is used. This part still needs to be allowed, but the dynamic off from the tnum must be rejected. Fixes: 69c087b ("bpf: Add bpf_for_each_map_elem() helper") Fixes: eaa6bcb ("bpf: Introduce bpf_per_cpu_ptr()") Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: John Fastabend <[email protected]> Acked-by: Alexei Starovoitov <[email protected]> (cherry picked from commit 6788ab2) Signed-off-by: Brett Mastbergen <[email protected]>
jira VULN-144 cve CVE-2022-23222 commit-author Daniel Borkmann <[email protected]> commit 64620e0 Both bpf_ringbuf_submit() and bpf_ringbuf_discard() have ARG_PTR_TO_ALLOC_MEM in their bpf_func_proto definition as their first argument. They both expect the result from a prior bpf_ringbuf_reserve() call which has a return type of RET_PTR_TO_ALLOC_MEM_OR_NULL. Meaning, after a NULL check in the code, the verifier will promote the register type in the non-NULL branch to a PTR_TO_MEM and in the NULL branch to a known zero scalar. Generally, pointer arithmetic on PTR_TO_MEM is allowed, so the latter could have an offset. The ARG_PTR_TO_ALLOC_MEM expects a PTR_TO_MEM register type. However, the non- zero result from bpf_ringbuf_reserve() must be fed into either bpf_ringbuf_submit() or bpf_ringbuf_discard() but with the original offset given it will then read out the struct bpf_ringbuf_hdr mapping. The verifier missed to enforce a zero offset, so that out of bounds access can be triggered which could be used to escalate privileges if unprivileged BPF was enabled (disabled by default in kernel). Fixes: 457f443 ("bpf: Implement BPF ring buffer and verifier support for it") Reported-by: <[email protected]> (SecCoder Security Lab) Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: John Fastabend <[email protected]> Acked-by: Alexei Starovoitov <[email protected]> (cherry picked from commit 64620e0) Signed-off-by: Brett Mastbergen <[email protected]>
jira VULN-72 cve CVE-2021-4204 commit-author Daniel Borkmann <[email protected]> commit a672b2e The bpf_ringbuf_submit() and bpf_ringbuf_discard() have ARG_PTR_TO_ALLOC_MEM in their bpf_func_proto definition as their first argument, and thus both expect the result from a prior bpf_ringbuf_reserve() call which has a return type of RET_PTR_TO_ALLOC_MEM_OR_NULL. While the non-NULL memory from bpf_ringbuf_reserve() can be passed to other helpers, the two sinks (bpf_ringbuf_submit(), bpf_ringbuf_discard()) right now only enforce a register type of PTR_TO_MEM. This can lead to potential type confusion since it would allow other PTR_TO_MEM memory to be passed into the two sinks which did not come from bpf_ringbuf_reserve(). Add a new MEM_ALLOC composable type attribute for PTR_TO_MEM, and enforce that: - bpf_ringbuf_reserve() returns NULL or PTR_TO_MEM | MEM_ALLOC - bpf_ringbuf_submit() and bpf_ringbuf_discard() only take PTR_TO_MEM | MEM_ALLOC but not plain PTR_TO_MEM arguments via ARG_PTR_TO_ALLOC_MEM - however, other helpers might treat PTR_TO_MEM | MEM_ALLOC as plain PTR_TO_MEM to populate the memory area when they use ARG_PTR_TO_{UNINIT_,}MEM in their func proto description Fixes: 457f443 ("bpf: Implement BPF ring buffer and verifier support for it") Reported-by: Alexei Starovoitov <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: John Fastabend <[email protected]> Acked-by: Alexei Starovoitov <[email protected]> (cherry picked from commit a672b2e) Signed-off-by: Brett Mastbergen <[email protected]>
e06dc0c
to
5ca0732
Compare
Force pushed just to add reference to newly created VULN-7854 in the commit log |
7964fac
into
fips-legacy-8-compliant/4.18.0-425.13.1
jira LE-2157 Rebuild_History Non-Buildable kernel-5.14.0-503.15.1.el9_5 commit-author Jamie Bainbridge <[email protected]> commit a699781 A sysfs reader can race with a device reset or removal, attempting to read device state when the device is not actually present. eg: [exception RIP: qed_get_current_link+17] #8 [ffffb9e4f2907c48] qede_get_link_ksettings at ffffffffc07a994a [qede] #9 [ffffb9e4f2907cd8] __rh_call_get_link_ksettings at ffffffff992b01a3 #10 [ffffb9e4f2907d38] __ethtool_get_link_ksettings at ffffffff992b04e4 #11 [ffffb9e4f2907d90] duplex_show at ffffffff99260300 #12 [ffffb9e4f2907e38] dev_attr_show at ffffffff9905a01c #13 [ffffb9e4f2907e50] sysfs_kf_seq_show at ffffffff98e0145b #14 [ffffb9e4f2907e68] seq_read at ffffffff98d902e3 #15 [ffffb9e4f2907ec8] vfs_read at ffffffff98d657d1 #16 [ffffb9e4f2907f00] ksys_read at ffffffff98d65c3f #17 [ffffb9e4f2907f38] do_syscall_64 at ffffffff98a052fb crash> struct net_device.state ffff9a9d21336000 state = 5, state 5 is __LINK_STATE_START (0b1) and __LINK_STATE_NOCARRIER (0b100). The device is not present, note lack of __LINK_STATE_PRESENT (0b10). This is the same sort of panic as observed in commit 4224cfd ("net-sysfs: add check for netdevice being present to speed_show"). There are many other callers of __ethtool_get_link_ksettings() which don't have a device presence check. Move this check into ethtool to protect all callers. Fixes: d519e17 ("net: export device speed and duplex via sysfs") Fixes: 4224cfd ("net-sysfs: add check for netdevice being present to speed_show") Signed-off-by: Jamie Bainbridge <[email protected]> Link: https://patch.msgid.link/8bae218864beaa44ed01628140475b9bf641c5b0.1724393671.git.jamie.bainbridge@gmail.com Signed-off-by: Jakub Kicinski <[email protected]> (cherry picked from commit a699781) Signed-off-by: Jonathan Maple <[email protected]>
jira LE-2169 Rebuild_History Non-Buildable kernel-4.18.0-553.27.1.el8_10 commit-author Jamie Bainbridge <[email protected]> commit a699781 A sysfs reader can race with a device reset or removal, attempting to read device state when the device is not actually present. eg: [exception RIP: qed_get_current_link+17] #8 [ffffb9e4f2907c48] qede_get_link_ksettings at ffffffffc07a994a [qede] #9 [ffffb9e4f2907cd8] __rh_call_get_link_ksettings at ffffffff992b01a3 #10 [ffffb9e4f2907d38] __ethtool_get_link_ksettings at ffffffff992b04e4 #11 [ffffb9e4f2907d90] duplex_show at ffffffff99260300 #12 [ffffb9e4f2907e38] dev_attr_show at ffffffff9905a01c #13 [ffffb9e4f2907e50] sysfs_kf_seq_show at ffffffff98e0145b #14 [ffffb9e4f2907e68] seq_read at ffffffff98d902e3 #15 [ffffb9e4f2907ec8] vfs_read at ffffffff98d657d1 #16 [ffffb9e4f2907f00] ksys_read at ffffffff98d65c3f #17 [ffffb9e4f2907f38] do_syscall_64 at ffffffff98a052fb crash> struct net_device.state ffff9a9d21336000 state = 5, state 5 is __LINK_STATE_START (0b1) and __LINK_STATE_NOCARRIER (0b100). The device is not present, note lack of __LINK_STATE_PRESENT (0b10). This is the same sort of panic as observed in commit 4224cfd ("net-sysfs: add check for netdevice being present to speed_show"). There are many other callers of __ethtool_get_link_ksettings() which don't have a device presence check. Move this check into ethtool to protect all callers. Fixes: d519e17 ("net: export device speed and duplex via sysfs") Fixes: 4224cfd ("net-sysfs: add check for netdevice being present to speed_show") Signed-off-by: Jamie Bainbridge <[email protected]> Link: https://patch.msgid.link/8bae218864beaa44ed01628140475b9bf641c5b0.1724393671.git.jamie.bainbridge@gmail.com Signed-off-by: Jakub Kicinski <[email protected]> (cherry picked from commit a699781) Signed-off-by: Jonathan Maple <[email protected]>
jira LE-1907 Rebuild_History Non-Buildable kernel-rt-5.14.0-284.30.1.rt14.315.el9_2 commit-author Stefan Assmann <[email protected]> commit 4e264be When a system with E810 with existing VFs gets rebooted the following hang may be observed. Pid 1 is hung in iavf_remove(), part of a network driver: PID: 1 TASK: ffff965400e5a340 CPU: 24 COMMAND: "systemd-shutdow" #0 [ffffaad04005fa50] __schedule at ffffffff8b3239cb ctrliq#1 [ffffaad04005fae8] schedule at ffffffff8b323e2d ctrliq#2 [ffffaad04005fb00] schedule_hrtimeout_range_clock at ffffffff8b32cebc ctrliq#3 [ffffaad04005fb80] usleep_range_state at ffffffff8b32c930 ctrliq#4 [ffffaad04005fbb0] iavf_remove at ffffffffc12b9b4c [iavf] ctrliq#5 [ffffaad04005fbf0] pci_device_remove at ffffffff8add7513 ctrliq#6 [ffffaad04005fc10] device_release_driver_internal at ffffffff8af08baa ctrliq#7 [ffffaad04005fc40] pci_stop_bus_device at ffffffff8adcc5fc ctrliq#8 [ffffaad04005fc60] pci_stop_and_remove_bus_device at ffffffff8adcc81e ctrliq#9 [ffffaad04005fc70] pci_iov_remove_virtfn at ffffffff8adf9429 ctrliq#10 [ffffaad04005fca8] sriov_disable at ffffffff8adf98e4 ctrliq#11 [ffffaad04005fcc8] ice_free_vfs at ffffffffc04bb2c8 [ice] ctrliq#12 [ffffaad04005fd10] ice_remove at ffffffffc04778fe [ice] ctrliq#13 [ffffaad04005fd38] ice_shutdown at ffffffffc0477946 [ice] ctrliq#14 [ffffaad04005fd50] pci_device_shutdown at ffffffff8add58f1 ctrliq#15 [ffffaad04005fd70] device_shutdown at ffffffff8af05386 ctrliq#16 [ffffaad04005fd98] kernel_restart at ffffffff8a92a870 ctrliq#17 [ffffaad04005fda8] __do_sys_reboot at ffffffff8a92abd6 ctrliq#18 [ffffaad04005fee0] do_syscall_64 at ffffffff8b317159 ctrliq#19 [ffffaad04005ff08] __context_tracking_enter at ffffffff8b31b6fc ctrliq#20 [ffffaad04005ff18] syscall_exit_to_user_mode at ffffffff8b31b50d ctrliq#21 [ffffaad04005ff28] do_syscall_64 at ffffffff8b317169 ctrliq#22 [ffffaad04005ff50] entry_SYSCALL_64_after_hwframe at ffffffff8b40009b RIP: 00007f1baa5c13d7 RSP: 00007fffbcc55a98 RFLAGS: 00000202 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1baa5c13d7 RDX: 0000000001234567 RSI: 0000000028121969 RDI: 00000000fee1dead RBP: 00007fffbcc55ca0 R8: 0000000000000000 R9: 00007fffbcc54e90 R10: 00007fffbcc55050 R11: 0000000000000202 R12: 0000000000000005 R13: 0000000000000000 R14: 00007fffbcc55af0 R15: 0000000000000000 ORIG_RAX: 00000000000000a9 CS: 0033 SS: 002b During reboot all drivers PM shutdown callbacks are invoked. In iavf_shutdown() the adapter state is changed to __IAVF_REMOVE. In ice_shutdown() the call chain above is executed, which at some point calls iavf_remove(). However iavf_remove() expects the VF to be in one of the states __IAVF_RUNNING, __IAVF_DOWN or __IAVF_INIT_FAILED. If that's not the case it sleeps forever. So if iavf_shutdown() gets invoked before iavf_remove() the system will hang indefinitely because the adapter is already in state __IAVF_REMOVE. Fix this by returning from iavf_remove() if the state is __IAVF_REMOVE, as we already went through iavf_shutdown(). Fixes: 9745780 ("iavf: Add waiting so the port is initialized in remove") Fixes: a841733 ("iavf: Fix race condition between iavf_shutdown and iavf_remove") Reported-by: Marius Cornea <[email protected]> Signed-off-by: Stefan Assmann <[email protected]> Reviewed-by: Michal Kubiak <[email protected]> Tested-by: Rafal Romanowski <[email protected]> Signed-off-by: Tony Nguyen <[email protected]> (cherry picked from commit 4e264be) Signed-off-by: Jonathan Maple <[email protected]>
jira LE-1907 Rebuild_History Non-Buildable kernel-rt-5.14.0-284.30.1.rt14.315.el9_2 commit-author Eelco Chaudron <[email protected]> commit de9df6c Currently, the per cpu upcall counters are allocated after the vport is created and inserted into the system. This could lead to the datapath accessing the counters before they are allocated resulting in a kernel Oops. Here is an example: PID: 59693 TASK: ffff0005f4f51500 CPU: 0 COMMAND: "ovs-vswitchd" #0 [ffff80000a39b5b0] __switch_to at ffffb70f0629f2f4 ctrliq#1 [ffff80000a39b5d0] __schedule at ffffb70f0629f5cc ctrliq#2 [ffff80000a39b650] preempt_schedule_common at ffffb70f0629fa60 ctrliq#3 [ffff80000a39b670] dynamic_might_resched at ffffb70f0629fb58 ctrliq#4 [ffff80000a39b680] mutex_lock_killable at ffffb70f062a1388 ctrliq#5 [ffff80000a39b6a0] pcpu_alloc at ffffb70f0594460c ctrliq#6 [ffff80000a39b750] __alloc_percpu_gfp at ffffb70f05944e68 ctrliq#7 [ffff80000a39b760] ovs_vport_cmd_new at ffffb70ee6961b90 [openvswitch] ... PID: 58682 TASK: ffff0005b2f0bf00 CPU: 0 COMMAND: "kworker/0:3" #0 [ffff80000a5d2f40] machine_kexec at ffffb70f056a0758 ctrliq#1 [ffff80000a5d2f70] __crash_kexec at ffffb70f057e2994 ctrliq#2 [ffff80000a5d3100] crash_kexec at ffffb70f057e2ad8 ctrliq#3 [ffff80000a5d3120] die at ffffb70f0628234c ctrliq#4 [ffff80000a5d31e0] die_kernel_fault at ffffb70f062828a8 ctrliq#5 [ffff80000a5d3210] __do_kernel_fault at ffffb70f056a31f4 ctrliq#6 [ffff80000a5d3240] do_bad_area at ffffb70f056a32a4 ctrliq#7 [ffff80000a5d3260] do_translation_fault at ffffb70f062a9710 ctrliq#8 [ffff80000a5d3270] do_mem_abort at ffffb70f056a2f74 ctrliq#9 [ffff80000a5d32a0] el1_abort at ffffb70f06297dac ctrliq#10 [ffff80000a5d32d0] el1h_64_sync_handler at ffffb70f06299b24 ctrliq#11 [ffff80000a5d3410] el1h_64_sync at ffffb70f056812dc ctrliq#12 [ffff80000a5d3430] ovs_dp_upcall at ffffb70ee6963c84 [openvswitch] ctrliq#13 [ffff80000a5d3470] ovs_dp_process_packet at ffffb70ee6963fdc [openvswitch] ctrliq#14 [ffff80000a5d34f0] ovs_vport_receive at ffffb70ee6972c78 [openvswitch] ctrliq#15 [ffff80000a5d36f0] netdev_port_receive at ffffb70ee6973948 [openvswitch] ctrliq#16 [ffff80000a5d3720] netdev_frame_hook at ffffb70ee6973a28 [openvswitch] ctrliq#17 [ffff80000a5d3730] __netif_receive_skb_core.constprop.0 at ffffb70f06079f90 We moved the per cpu upcall counter allocation to the existing vport alloc and free functions to solve this. Fixes: 95637d9 ("net: openvswitch: release vport resources on failure") Fixes: 1933ea3 ("net: openvswitch: Add support to count upcall packets") Signed-off-by: Eelco Chaudron <[email protected]> Reviewed-by: Simon Horman <[email protected]> Acked-by: Aaron Conole <[email protected]> Signed-off-by: David S. Miller <[email protected]> (cherry picked from commit de9df6c) Signed-off-by: Jonathan Maple <[email protected]>
[ Upstream commit 6d00234 ] Function xen_pin_page calls xen_pte_lock, which in turn grab page table lock (ptlock). When locking, xen_pte_lock expect mm->page_table_lock to be held before grabbing ptlock, but this does not happen when pinning is caused by xen_mm_pin_all. This commit addresses lockdep warning below, which shows up when suspending a Xen VM. [ 3680.658422] Freezing user space processes [ 3680.660156] Freezing user space processes completed (elapsed 0.001 seconds) [ 3680.660182] OOM killer disabled. [ 3680.660192] Freezing remaining freezable tasks [ 3680.661485] Freezing remaining freezable tasks completed (elapsed 0.001 seconds) [ 3680.685254] [ 3680.685265] ================================== [ 3680.685269] WARNING: Nested lock was not taken [ 3680.685274] 6.12.0+ ctrliq#16 Tainted: G W [ 3680.685279] ---------------------------------- [ 3680.685283] migration/0/19 is trying to lock: [ 3680.685288] ffff88800bac33c0 (ptlock_ptr(ptdesc)#2){+.+.}-{3:3}, at: xen_pin_page+0x175/0x1d0 [ 3680.685303] [ 3680.685303] but this task is not holding: [ 3680.685308] init_mm.page_table_lock [ 3680.685311] [ 3680.685311] stack backtrace: [ 3680.685316] CPU: 0 UID: 0 PID: 19 Comm: migration/0 Tainted: G W 6.12.0+ ctrliq#16 [ 3680.685324] Tainted: [W]=WARN [ 3680.685328] Stopper: multi_cpu_stop+0x0/0x120 <- __stop_cpus.constprop.0+0x8c/0xd0 [ 3680.685339] Call Trace: [ 3680.685344] <TASK> [ 3680.685347] dump_stack_lvl+0x77/0xb0 [ 3680.685356] __lock_acquire+0x917/0x2310 [ 3680.685364] lock_acquire+0xce/0x2c0 [ 3680.685369] ? xen_pin_page+0x175/0x1d0 [ 3680.685373] _raw_spin_lock_nest_lock+0x2f/0x70 [ 3680.685381] ? xen_pin_page+0x175/0x1d0 [ 3680.685386] xen_pin_page+0x175/0x1d0 [ 3680.685390] ? __pfx_xen_pin_page+0x10/0x10 [ 3680.685394] __xen_pgd_walk+0x233/0x2c0 [ 3680.685401] ? stop_one_cpu+0x91/0x100 [ 3680.685405] __xen_pgd_pin+0x5d/0x250 [ 3680.685410] xen_mm_pin_all+0x70/0xa0 [ 3680.685415] xen_pv_pre_suspend+0xf/0x280 [ 3680.685420] xen_suspend+0x57/0x1a0 [ 3680.685428] multi_cpu_stop+0x6b/0x120 [ 3680.685432] ? update_cpumasks_hier+0x7c/0xa60 [ 3680.685439] ? __pfx_multi_cpu_stop+0x10/0x10 [ 3680.685443] cpu_stopper_thread+0x8c/0x140 [ 3680.685448] ? smpboot_thread_fn+0x20/0x1f0 [ 3680.685454] ? __pfx_smpboot_thread_fn+0x10/0x10 [ 3680.685458] smpboot_thread_fn+0xed/0x1f0 [ 3680.685462] kthread+0xde/0x110 [ 3680.685467] ? __pfx_kthread+0x10/0x10 [ 3680.685471] ret_from_fork+0x2f/0x50 [ 3680.685478] ? __pfx_kthread+0x10/0x10 [ 3680.685482] ret_from_fork_asm+0x1a/0x30 [ 3680.685489] </TASK> [ 3680.685491] [ 3680.685491] other info that might help us debug this: [ 3680.685497] 1 lock held by migration/0/19: [ 3680.685500] #0: ffffffff8284df38 (pgd_lock){+.+.}-{3:3}, at: xen_mm_pin_all+0x14/0xa0 [ 3680.685512] [ 3680.685512] stack backtrace: [ 3680.685518] CPU: 0 UID: 0 PID: 19 Comm: migration/0 Tainted: G W 6.12.0+ ctrliq#16 [ 3680.685528] Tainted: [W]=WARN [ 3680.685531] Stopper: multi_cpu_stop+0x0/0x120 <- __stop_cpus.constprop.0+0x8c/0xd0 [ 3680.685538] Call Trace: [ 3680.685541] <TASK> [ 3680.685544] dump_stack_lvl+0x77/0xb0 [ 3680.685549] __lock_acquire+0x93c/0x2310 [ 3680.685554] lock_acquire+0xce/0x2c0 [ 3680.685558] ? xen_pin_page+0x175/0x1d0 [ 3680.685562] _raw_spin_lock_nest_lock+0x2f/0x70 [ 3680.685568] ? xen_pin_page+0x175/0x1d0 [ 3680.685572] xen_pin_page+0x175/0x1d0 [ 3680.685578] ? __pfx_xen_pin_page+0x10/0x10 [ 3680.685582] __xen_pgd_walk+0x233/0x2c0 [ 3680.685588] ? stop_one_cpu+0x91/0x100 [ 3680.685592] __xen_pgd_pin+0x5d/0x250 [ 3680.685596] xen_mm_pin_all+0x70/0xa0 [ 3680.685600] xen_pv_pre_suspend+0xf/0x280 [ 3680.685607] xen_suspend+0x57/0x1a0 [ 3680.685611] multi_cpu_stop+0x6b/0x120 [ 3680.685615] ? update_cpumasks_hier+0x7c/0xa60 [ 3680.685620] ? __pfx_multi_cpu_stop+0x10/0x10 [ 3680.685625] cpu_stopper_thread+0x8c/0x140 [ 3680.685629] ? smpboot_thread_fn+0x20/0x1f0 [ 3680.685634] ? __pfx_smpboot_thread_fn+0x10/0x10 [ 3680.685638] smpboot_thread_fn+0xed/0x1f0 [ 3680.685642] kthread+0xde/0x110 [ 3680.685645] ? __pfx_kthread+0x10/0x10 [ 3680.685649] ret_from_fork+0x2f/0x50 [ 3680.685654] ? __pfx_kthread+0x10/0x10 [ 3680.685657] ret_from_fork_asm+0x1a/0x30 [ 3680.685662] </TASK> [ 3680.685267] xen:grant_table: Grant tables using version 1 layout [ 3680.685921] OOM killer enabled. [ 3680.685934] Restarting tasks ... done. Signed-off-by: Maksym Planeta <[email protected]> Reviewed-by: Juergen Gross <[email protected]> Message-ID: <[email protected]> Signed-off-by: Juergen Gross <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
commit ddc210c upstream. Fixed warning on PM resume as shown below caused due to uninitialized struct nand_operation that checks chip select field : WARN_ON(op->cs >= nanddev_ntargets(&chip->base) [ 14.588522] ------------[ cut here ]------------ [ 14.588529] WARNING: CPU: 0 PID: 1392 at drivers/mtd/nand/raw/internals.h:139 nand_reset_op+0x1e0/0x1f8 [ 14.588553] Modules linked in: bdc udc_core [ 14.588579] CPU: 0 UID: 0 PID: 1392 Comm: rtcwake Tainted: G W 6.14.0-rc4-g5394eea10651 ctrliq#16 [ 14.588590] Tainted: [W]=WARN [ 14.588593] Hardware name: Broadcom STB (Flattened Device Tree) [ 14.588598] Call trace: [ 14.588604] dump_backtrace from show_stack+0x18/0x1c [ 14.588622] r7:00000009 r6:0000008b r5:60000153 r4:c0fa558c [ 14.588625] show_stack from dump_stack_lvl+0x70/0x7c [ 14.588639] dump_stack_lvl from dump_stack+0x18/0x1c [ 14.588653] r5:c08d40b0 r4:c1003cb0 [ 14.588656] dump_stack from __warn+0x84/0xe4 [ 14.588668] __warn from warn_slowpath_fmt+0x18c/0x194 [ 14.588678] r7:c08d40b0 r6:c1003cb0 r5:00000000 r4:00000000 [ 14.588681] warn_slowpath_fmt from nand_reset_op+0x1e0/0x1f8 [ 14.588695] r8:70c40dff r7:89705f41 r6:36b4a597 r5:c26c9444 r4:c26b0048 [ 14.588697] nand_reset_op from brcmnand_resume+0x13c/0x150 [ 14.588714] r9:00000000 r8:00000000 r7:c24f8010 r6:c228a3f8 r5:c26c94bc r4:c26b0040 [ 14.588717] brcmnand_resume from platform_pm_resume+0x34/0x54 [ 14.588735] r5:00000010 r4:c0840a50 [ 14.588738] platform_pm_resume from dpm_run_callback+0x5c/0x14c [ 14.588757] dpm_run_callback from device_resume+0xc0/0x324 [ 14.588776] r9:c24f8054 r8:c24f80a0 r7:00000000 r6:00000000 r5:00000010 r4:c24f8010 [ 14.588779] device_resume from dpm_resume+0x130/0x160 [ 14.588799] r9:c22539e4 r8:00000010 r7:c22bebb0 r6:c24f8010 r5:c22539dc r4:c22539b0 [ 14.588802] dpm_resume from dpm_resume_end+0x14/0x20 [ 14.588822] r10:c2204e40 r9:00000000 r8:c228a3fc r7:00000000 r6:00000003 r5:c228a414 [ 14.588826] r4:00000010 [ 14.588828] dpm_resume_end from suspend_devices_and_enter+0x274/0x6f8 [ 14.588848] r5:c228a414 r4:00000000 [ 14.588851] suspend_devices_and_enter from pm_suspend+0x228/0x2bc [ 14.588868] r10:c3502910 r9:c3501f40 r8:00000004 r7:c228a438 r6:c0f95e18 r5:00000000 [ 14.588871] r4:00000003 [ 14.588874] pm_suspend from state_store+0x74/0xd0 [ 14.588889] r7:c228a438 r6:c0f934c8 r5:00000003 r4:00000003 [ 14.588892] state_store from kobj_attr_store+0x1c/0x28 [ 14.588913] r9:00000000 r8:00000000 r7:f09f9f08 r6:00000004 r5:c3502900 r4:c0283250 [ 14.588916] kobj_attr_store from sysfs_kf_write+0x40/0x4c [ 14.588936] r5:c3502900 r4:c0d92a48 [ 14.588939] sysfs_kf_write from kernfs_fop_write_iter+0x104/0x1f0 [ 14.588956] r5:c3502900 r4:c3501f40 [ 14.588960] kernfs_fop_write_iter from vfs_write+0x250/0x420 [ 14.588980] r10:c0e14b48 r9:00000000 r8:c25f5780 r7:00443398 r6:f09f9f68 r5:c34f7f00 [ 14.588983] r4:c042a88c [ 14.588987] vfs_write from ksys_write+0x74/0xe4 [ 14.589005] r10:00000004 r9:c25f5780 r8:c02002fA0 r7:00000000 r6:00000000 r5:c34f7f00 [ 14.589008] r4:c34f7f00 [ 14.589011] ksys_write from sys_write+0x10/0x14 [ 14.589029] r7:00000004 r6:004421c0 r5:00443398 r4:00000004 [ 14.589032] sys_write from ret_fast_syscall+0x0/0x5c [ 14.589044] Exception stack(0xf09f9fa8 to 0xf09f9ff0) [ 14.589050] 9fa0: 00000004 00443398 00000004 00443398 00000004 00000001 [ 14.589056] 9fc0: 00000004 00443398 004421c0 00000004 b6ecbd58 00000008 bebfbc38 0043eb78 [ 14.589062] 9fe0: 00440eb0 bebfbaf8 b6de18a0 b6e579e8 [ 14.589065] ---[ end trace 0000000000000000 ]--- The fix uses the higher level nand_reset(chip, chipnr); where chipnr = 0, when doing PM resume operation in compliance with the controller support for single die nand chip. Switching from nand_reset_op() to nand_reset() implies more than just setting the cs field op->cs, it also reconfigures the data interface (ie. the timings). Tested and confirmed the NAND chip is in sync timing wise with host after the fix. Fixes: 97d90da ("mtd: nand: provide several helpers to do common NAND operations") Cc: [email protected] Signed-off-by: Kamal Dasu <[email protected]> Reviewed-by: Florian Fainelli <[email protected]> Signed-off-by: Miquel Raynal <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
There is a potential deadlock if we do report zones in an IO context, detailed in below lockdep report. When one process do a report zones and another process freezes the block device, the report zones side cannot allocate a tag because the freeze is already started. This can thus result in new block group creation to hang forever, blocking the write path. Thankfully, a new block group should be created on empty zones. So, reporting the zones is not necessary and we can set the write pointer = 0 and load the zone capacity from the block layer using bdev_zone_capacity() helper. ====================================================== WARNING: possible circular locking dependency detected 6.14.0-rc1 #252 Not tainted ------------------------------------------------------ modprobe/1110 is trying to acquire lock: ffff888100ac83e0 ((work_completion)(&(&wb->dwork)->work)){+.+.}-{0:0}, at: __flush_work+0x38f/0xb60 but task is already holding lock: ffff8881205b6f20 (&q->q_usage_counter(queue)#16){++++}-{0:0}, at: sd_remove+0x85/0x130 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&q->q_usage_counter(queue)#16){++++}-{0:0}: blk_queue_enter+0x3d9/0x500 blk_mq_alloc_request+0x47d/0x8e0 scsi_execute_cmd+0x14f/0xb80 sd_zbc_do_report_zones+0x1c1/0x470 sd_zbc_report_zones+0x362/0xd60 blkdev_report_zones+0x1b1/0x2e0 btrfs_get_dev_zones+0x215/0x7e0 [btrfs] btrfs_load_block_group_zone_info+0x6d2/0x2c10 [btrfs] btrfs_make_block_group+0x36b/0x870 [btrfs] btrfs_create_chunk+0x147d/0x2320 [btrfs] btrfs_chunk_alloc+0x2ce/0xcf0 [btrfs] start_transaction+0xce6/0x1620 [btrfs] btrfs_uuid_scan_kthread+0x4ee/0x5b0 [btrfs] kthread+0x39d/0x750 ret_from_fork+0x30/0x70 ret_from_fork_asm+0x1a/0x30 -> #2 (&fs_info->dev_replace.rwsem){++++}-{4:4}: down_read+0x9b/0x470 btrfs_map_block+0x2ce/0x2ce0 [btrfs] btrfs_submit_chunk+0x2d4/0x16c0 [btrfs] btrfs_submit_bbio+0x16/0x30 [btrfs] btree_write_cache_pages+0xb5a/0xf90 [btrfs] do_writepages+0x17f/0x7b0 __writeback_single_inode+0x114/0xb00 writeback_sb_inodes+0x52b/0xe00 wb_writeback+0x1a7/0x800 wb_workfn+0x12a/0xbd0 process_one_work+0x85a/0x1460 worker_thread+0x5e2/0xfc0 kthread+0x39d/0x750 ret_from_fork+0x30/0x70 ret_from_fork_asm+0x1a/0x30 -> #1 (&fs_info->zoned_meta_io_lock){+.+.}-{4:4}: __mutex_lock+0x1aa/0x1360 btree_write_cache_pages+0x252/0xf90 [btrfs] do_writepages+0x17f/0x7b0 __writeback_single_inode+0x114/0xb00 writeback_sb_inodes+0x52b/0xe00 wb_writeback+0x1a7/0x800 wb_workfn+0x12a/0xbd0 process_one_work+0x85a/0x1460 worker_thread+0x5e2/0xfc0 kthread+0x39d/0x750 ret_from_fork+0x30/0x70 ret_from_fork_asm+0x1a/0x30 -> #0 ((work_completion)(&(&wb->dwork)->work)){+.+.}-{0:0}: __lock_acquire+0x2f52/0x5ea0 lock_acquire+0x1b1/0x540 __flush_work+0x3ac/0xb60 wb_shutdown+0x15b/0x1f0 bdi_unregister+0x172/0x5b0 del_gendisk+0x841/0xa20 sd_remove+0x85/0x130 device_release_driver_internal+0x368/0x520 bus_remove_device+0x1f1/0x3f0 device_del+0x3bd/0x9c0 __scsi_remove_device+0x272/0x340 scsi_forget_host+0xf7/0x170 scsi_remove_host+0xd2/0x2a0 sdebug_driver_remove+0x52/0x2f0 [scsi_debug] device_release_driver_internal+0x368/0x520 bus_remove_device+0x1f1/0x3f0 device_del+0x3bd/0x9c0 device_unregister+0x13/0xa0 sdebug_do_remove_host+0x1fb/0x290 [scsi_debug] scsi_debug_exit+0x17/0x70 [scsi_debug] __do_sys_delete_module.isra.0+0x321/0x520 do_syscall_64+0x93/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e other info that might help us debug this: Chain exists of: (work_completion)(&(&wb->dwork)->work) --> &fs_info->dev_replace.rwsem --> &q->q_usage_counter(queue)#16 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&q->q_usage_counter(queue)#16); lock(&fs_info->dev_replace.rwsem); lock(&q->q_usage_counter(queue)#16); lock((work_completion)(&(&wb->dwork)->work)); *** DEADLOCK *** 5 locks held by modprobe/1110: #0: ffff88811f7bc108 (&dev->mutex){....}-{4:4}, at: device_release_driver_internal+0x8f/0x520 #1: ffff8881022ee0e0 (&shost->scan_mutex){+.+.}-{4:4}, at: scsi_remove_host+0x20/0x2a0 #2: ffff88811b4c4378 (&dev->mutex){....}-{4:4}, at: device_release_driver_internal+0x8f/0x520 #3: ffff8881205b6f20 (&q->q_usage_counter(queue)#16){++++}-{0:0}, at: sd_remove+0x85/0x130 #4: ffffffffa3284360 (rcu_read_lock){....}-{1:3}, at: __flush_work+0xda/0xb60 stack backtrace: CPU: 0 UID: 0 PID: 1110 Comm: modprobe Not tainted 6.14.0-rc1 #252 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x6a/0x90 print_circular_bug.cold+0x1e0/0x274 check_noncircular+0x306/0x3f0 ? __pfx_check_noncircular+0x10/0x10 ? mark_lock+0xf5/0x1650 ? __pfx_check_irq_usage+0x10/0x10 ? lockdep_lock+0xca/0x1c0 ? __pfx_lockdep_lock+0x10/0x10 __lock_acquire+0x2f52/0x5ea0 ? __pfx___lock_acquire+0x10/0x10 ? __pfx_mark_lock+0x10/0x10 lock_acquire+0x1b1/0x540 ? __flush_work+0x38f/0xb60 ? __pfx_lock_acquire+0x10/0x10 ? __pfx_lock_release+0x10/0x10 ? mark_held_locks+0x94/0xe0 ? __flush_work+0x38f/0xb60 __flush_work+0x3ac/0xb60 ? __flush_work+0x38f/0xb60 ? __pfx_mark_lock+0x10/0x10 ? __pfx___flush_work+0x10/0x10 ? __pfx_wq_barrier_func+0x10/0x10 ? __pfx___might_resched+0x10/0x10 ? mark_held_locks+0x94/0xe0 wb_shutdown+0x15b/0x1f0 bdi_unregister+0x172/0x5b0 ? __pfx_bdi_unregister+0x10/0x10 ? up_write+0x1ba/0x510 del_gendisk+0x841/0xa20 ? __pfx_del_gendisk+0x10/0x10 ? _raw_spin_unlock_irqrestore+0x35/0x60 ? __pm_runtime_resume+0x79/0x110 sd_remove+0x85/0x130 device_release_driver_internal+0x368/0x520 ? kobject_put+0x5d/0x4a0 bus_remove_device+0x1f1/0x3f0 device_del+0x3bd/0x9c0 ? __pfx_device_del+0x10/0x10 __scsi_remove_device+0x272/0x340 scsi_forget_host+0xf7/0x170 scsi_remove_host+0xd2/0x2a0 sdebug_driver_remove+0x52/0x2f0 [scsi_debug] ? kernfs_remove_by_name_ns+0xc0/0xf0 device_release_driver_internal+0x368/0x520 ? kobject_put+0x5d/0x4a0 bus_remove_device+0x1f1/0x3f0 device_del+0x3bd/0x9c0 ? __pfx_device_del+0x10/0x10 ? __pfx___mutex_unlock_slowpath+0x10/0x10 device_unregister+0x13/0xa0 sdebug_do_remove_host+0x1fb/0x290 [scsi_debug] scsi_debug_exit+0x17/0x70 [scsi_debug] __do_sys_delete_module.isra.0+0x321/0x520 ? __pfx___do_sys_delete_module.isra.0+0x10/0x10 ? __pfx_slab_free_after_rcu_debug+0x10/0x10 ? kasan_save_stack+0x2c/0x50 ? kasan_record_aux_stack+0xa3/0xb0 ? __call_rcu_common.constprop.0+0xc4/0xfb0 ? kmem_cache_free+0x3a0/0x590 ? __x64_sys_close+0x78/0xd0 do_syscall_64+0x93/0x180 ? lock_is_held_type+0xd5/0x130 ? __call_rcu_common.constprop.0+0x3c0/0xfb0 ? lockdep_hardirqs_on+0x78/0x100 ? __call_rcu_common.constprop.0+0x3c0/0xfb0 ? __pfx___call_rcu_common.constprop.0+0x10/0x10 ? kmem_cache_free+0x3a0/0x590 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 ? __pfx___x64_sys_openat+0x10/0x10 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f436712b68b RSP: 002b:00007ffe9f1a8658 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 00005559b367fd80 RCX: 00007f436712b68b RDX: 0000000000000000 RSI: 0000000000000800 RDI: 00005559b367fde8 RBP: 00007ffe9f1a8680 R08: 1999999999999999 R09: 0000000000000000 R10: 00007f43671a5fe0 R11: 0000000000000206 R12: 0000000000000000 R13: 00007ffe9f1a86b0 R14: 0000000000000000 R15: 0000000000000000 </TASK> Reported-by: Shin'ichiro Kawasaki <[email protected]> CC: <[email protected]> # 6.13+ Tested-by: Shin'ichiro Kawasaki <[email protected]> Reviewed-by: Damien Le Moal <[email protected]> Reviewed-by: Johannes Thumshirn <[email protected]> Signed-off-by: Naohiro Aota <[email protected]> Signed-off-by: David Sterba <[email protected]>
jira LE-1907 Rebuild_History Non-Buildable kernel-5.14.0-284.30.1.el9_2 commit-author Stefan Assmann <[email protected]> commit 4e264be When a system with E810 with existing VFs gets rebooted the following hang may be observed. Pid 1 is hung in iavf_remove(), part of a network driver: PID: 1 TASK: ffff965400e5a340 CPU: 24 COMMAND: "systemd-shutdow" #0 [ffffaad04005fa50] __schedule at ffffffff8b3239cb #1 [ffffaad04005fae8] schedule at ffffffff8b323e2d #2 [ffffaad04005fb00] schedule_hrtimeout_range_clock at ffffffff8b32cebc #3 [ffffaad04005fb80] usleep_range_state at ffffffff8b32c930 ctrliq#4 [ffffaad04005fbb0] iavf_remove at ffffffffc12b9b4c [iavf] ctrliq#5 [ffffaad04005fbf0] pci_device_remove at ffffffff8add7513 ctrliq#6 [ffffaad04005fc10] device_release_driver_internal at ffffffff8af08baa ctrliq#7 [ffffaad04005fc40] pci_stop_bus_device at ffffffff8adcc5fc ctrliq#8 [ffffaad04005fc60] pci_stop_and_remove_bus_device at ffffffff8adcc81e ctrliq#9 [ffffaad04005fc70] pci_iov_remove_virtfn at ffffffff8adf9429 ctrliq#10 [ffffaad04005fca8] sriov_disable at ffffffff8adf98e4 ctrliq#11 [ffffaad04005fcc8] ice_free_vfs at ffffffffc04bb2c8 [ice] ctrliq#12 [ffffaad04005fd10] ice_remove at ffffffffc04778fe [ice] ctrliq#13 [ffffaad04005fd38] ice_shutdown at ffffffffc0477946 [ice] ctrliq#14 [ffffaad04005fd50] pci_device_shutdown at ffffffff8add58f1 ctrliq#15 [ffffaad04005fd70] device_shutdown at ffffffff8af05386 ctrliq#16 [ffffaad04005fd98] kernel_restart at ffffffff8a92a870 ctrliq#17 [ffffaad04005fda8] __do_sys_reboot at ffffffff8a92abd6 ctrliq#18 [ffffaad04005fee0] do_syscall_64 at ffffffff8b317159 ctrliq#19 [ffffaad04005ff08] __context_tracking_enter at ffffffff8b31b6fc ctrliq#20 [ffffaad04005ff18] syscall_exit_to_user_mode at ffffffff8b31b50d ctrliq#21 [ffffaad04005ff28] do_syscall_64 at ffffffff8b317169 ctrliq#22 [ffffaad04005ff50] entry_SYSCALL_64_after_hwframe at ffffffff8b40009b RIP: 00007f1baa5c13d7 RSP: 00007fffbcc55a98 RFLAGS: 00000202 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1baa5c13d7 RDX: 0000000001234567 RSI: 0000000028121969 RDI: 00000000fee1dead RBP: 00007fffbcc55ca0 R8: 0000000000000000 R9: 00007fffbcc54e90 R10: 00007fffbcc55050 R11: 0000000000000202 R12: 0000000000000005 R13: 0000000000000000 R14: 00007fffbcc55af0 R15: 0000000000000000 ORIG_RAX: 00000000000000a9 CS: 0033 SS: 002b During reboot all drivers PM shutdown callbacks are invoked. In iavf_shutdown() the adapter state is changed to __IAVF_REMOVE. In ice_shutdown() the call chain above is executed, which at some point calls iavf_remove(). However iavf_remove() expects the VF to be in one of the states __IAVF_RUNNING, __IAVF_DOWN or __IAVF_INIT_FAILED. If that's not the case it sleeps forever. So if iavf_shutdown() gets invoked before iavf_remove() the system will hang indefinitely because the adapter is already in state __IAVF_REMOVE. Fix this by returning from iavf_remove() if the state is __IAVF_REMOVE, as we already went through iavf_shutdown(). Fixes: 9745780 ("iavf: Add waiting so the port is initialized in remove") Fixes: a841733 ("iavf: Fix race condition between iavf_shutdown and iavf_remove") Reported-by: Marius Cornea <[email protected]> Signed-off-by: Stefan Assmann <[email protected]> Reviewed-by: Michal Kubiak <[email protected]> Tested-by: Rafal Romanowski <[email protected]> Signed-off-by: Tony Nguyen <[email protected]> (cherry picked from commit 4e264be) Signed-off-by: Jonathan Maple <[email protected]>
jira LE-1907 Rebuild_History Non-Buildable kernel-5.14.0-284.30.1.el9_2 commit-author Eelco Chaudron <[email protected]> commit de9df6c Currently, the per cpu upcall counters are allocated after the vport is created and inserted into the system. This could lead to the datapath accessing the counters before they are allocated resulting in a kernel Oops. Here is an example: PID: 59693 TASK: ffff0005f4f51500 CPU: 0 COMMAND: "ovs-vswitchd" #0 [ffff80000a39b5b0] __switch_to at ffffb70f0629f2f4 #1 [ffff80000a39b5d0] __schedule at ffffb70f0629f5cc #2 [ffff80000a39b650] preempt_schedule_common at ffffb70f0629fa60 #3 [ffff80000a39b670] dynamic_might_resched at ffffb70f0629fb58 ctrliq#4 [ffff80000a39b680] mutex_lock_killable at ffffb70f062a1388 ctrliq#5 [ffff80000a39b6a0] pcpu_alloc at ffffb70f0594460c ctrliq#6 [ffff80000a39b750] __alloc_percpu_gfp at ffffb70f05944e68 ctrliq#7 [ffff80000a39b760] ovs_vport_cmd_new at ffffb70ee6961b90 [openvswitch] ... PID: 58682 TASK: ffff0005b2f0bf00 CPU: 0 COMMAND: "kworker/0:3" #0 [ffff80000a5d2f40] machine_kexec at ffffb70f056a0758 #1 [ffff80000a5d2f70] __crash_kexec at ffffb70f057e2994 #2 [ffff80000a5d3100] crash_kexec at ffffb70f057e2ad8 #3 [ffff80000a5d3120] die at ffffb70f0628234c ctrliq#4 [ffff80000a5d31e0] die_kernel_fault at ffffb70f062828a8 ctrliq#5 [ffff80000a5d3210] __do_kernel_fault at ffffb70f056a31f4 ctrliq#6 [ffff80000a5d3240] do_bad_area at ffffb70f056a32a4 ctrliq#7 [ffff80000a5d3260] do_translation_fault at ffffb70f062a9710 ctrliq#8 [ffff80000a5d3270] do_mem_abort at ffffb70f056a2f74 ctrliq#9 [ffff80000a5d32a0] el1_abort at ffffb70f06297dac ctrliq#10 [ffff80000a5d32d0] el1h_64_sync_handler at ffffb70f06299b24 ctrliq#11 [ffff80000a5d3410] el1h_64_sync at ffffb70f056812dc ctrliq#12 [ffff80000a5d3430] ovs_dp_upcall at ffffb70ee6963c84 [openvswitch] ctrliq#13 [ffff80000a5d3470] ovs_dp_process_packet at ffffb70ee6963fdc [openvswitch] ctrliq#14 [ffff80000a5d34f0] ovs_vport_receive at ffffb70ee6972c78 [openvswitch] ctrliq#15 [ffff80000a5d36f0] netdev_port_receive at ffffb70ee6973948 [openvswitch] ctrliq#16 [ffff80000a5d3720] netdev_frame_hook at ffffb70ee6973a28 [openvswitch] ctrliq#17 [ffff80000a5d3730] __netif_receive_skb_core.constprop.0 at ffffb70f06079f90 We moved the per cpu upcall counter allocation to the existing vport alloc and free functions to solve this. Fixes: 95637d9 ("net: openvswitch: release vport resources on failure") Fixes: 1933ea3 ("net: openvswitch: Add support to count upcall packets") Signed-off-by: Eelco Chaudron <[email protected]> Reviewed-by: Simon Horman <[email protected]> Acked-by: Aaron Conole <[email protected]> Signed-off-by: David S. Miller <[email protected]> (cherry picked from commit de9df6c) Signed-off-by: Jonathan Maple <[email protected]>
Vulnerabilities and CVEs addressed include:
jira VULN-72
CVE-2021-4204
jira VULN-144
CVE-2022-23222
jira VULN-7854
CVE-2022-48929
build/install/boot log
kernel-build.log
[brett@vuln_72_8 ~]$ uname -a
Linux vuln_72_8 4.18.0-CVE-2021-4204+ #1 SMP Fri Nov 22 17:21:12 UTC 2024 x86_64 x86_64 x86_64 GNU/Linux
kselftests before and after
kernel-selftests-before.log
kernel-selftests-after.log
kselftests run with lockdep, kmemleak, and stress
kernel-selftests-stress-lockdep-kmemleak.log
The backported commits target bpf, so bpf specific kselftests before and after
bpf-selftests-before.log
bpf-selftests-after.log
Generally, I did what stable 5.15 did to address these two CVEs
https://lore.kernel.org/lkml/[email protected]/
Note: CVE-2022-48929 didn't have a ticket, but is a fix to a change made to address CVE-2022-0500. The backports referenced above folded this change into one of the 5 changes they made. I wanted to call out the change in its own commit. Thats why this PR has 6 commits, and stable only had 5
Note^: There was some discussion in PR #12 about how we ended up with a slightly different conditional in btf.c than what rocky8_10 has. That will be the case here as well. It seems like the backport of 45ce4b4 was not done correctly there. The conditional we end up with in this PR matches what is in current upstream.
Note^^: RH changelog would lead you to believe that c25b2ae addresses CVE-2022-0500 and CVE-2022-23222
But cvg.org references a different upstream commit as the fix for CVE-2022-23222
https://www.cve.org/CVERecord/?id=CVE-2022-23222
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=64620e0a1e712a778095bd35cbb277dc2259281f
This ^^^ is what I have backported to address CVE-2022-23222 and matches what stable did for 5.15