-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Elior Rahmani
authored and
Elior Rahmani
committed
Feb 14, 2021
1 parent
34bfb65
commit 8b824f1
Showing
31 changed files
with
1,992 additions
and
544 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,17 +1,18 @@ | ||
Package: TCA | ||
Type: Package | ||
Title: Tensor Composition Analysis | ||
Version: 1.1.0 | ||
Authors@R: person("Elior", "Rahmani", email = "[email protected]", role = c("aut", "cre")) | ||
Author: Elior Rahmani [aut, cre] | ||
Maintainer: Elior Rahmani <[email protected]> | ||
Description: Tensor Composition Analysis (TCA) allows the deconvolution of two-dimensional data (features by observations) coming from a mixture of sources into a three-dimensional matrix of signals (features by observations by sources). TCA further allows to test the features in the data for different statistical relations with an outcome of interest while modeling source-specific effects (TCA regression); particularly, it allows to look for statistical relations between source-specific signals and an outcome. For example, TCA can deconvolve bulk tissue-level DNA methylation data (methylation sites by individuals) into a tensor of cell-type-specific methylation levels for each individual (methylation sites by individuals by cell types) and it allows to detect cell-type-specific relations (associations) with an outcome of interest. For more details see Rahmani et al. (2018) <DOI:10.1101/437368>. | ||
Version: 1.2.1 | ||
Authors@R: c( | ||
person("Elior", "Rahmani", role=c("aut", "cre"), email = "[email protected]"), | ||
person("Brandon", "Jew", role=c("ctb")) | ||
) | ||
Description: Tensor Composition Analysis (TCA) allows the deconvolution of two-dimensional data (features by observations) coming from a mixture of heterogeneous sources into a three-dimensional matrix of signals (features by observations by sources). The TCA framework further allows to test the features in the data for different statistical relations with an outcome of interest while modeling source-specific effects; particularly, it allows to look for statistical relations between source-specific signals and an outcome. For example, TCA can deconvolve bulk tissue-level DNA methylation data (methylation sites by individuals) into a three-dimensional tensor of cell-type-specific methylation levels for each individual (i.e. methylation sites by individuals by cell types) and it allows to detect cell-type-specific statistical relations (associations) with phenotypes. For more details see Rahmani et al. (2019) <DOI:10.1038/s41467-019-11052-9>. | ||
License: GPL-3 | ||
Encoding: UTF-8 | ||
LazyData: true | ||
Imports: config, data.table, futile.logger, gmodels, Matrix, matrixcalc, matrixStats, nloptr, parallel, pbapply, pracma, rsvd, stats, quadprog, glmnet | ||
RoxygenNote: 6.1.1 | ||
Depends: R (>= 3.4.0) | ||
RoxygenNote: 7.1.1 | ||
Depends: R (>= 3.5.0) | ||
Suggests: | ||
testthat, | ||
knitr, | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.