Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 13 additions & 5 deletions src/numpy_pandas/dataframe_operations.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,31 +62,39 @@ def pivot_table(
df: pd.DataFrame, index: str, columns: str, values: str, aggfunc: str = "mean"
) -> dict[Any, dict[Any, float]]:
result = {}
# Define aggregation function
if aggfunc == "mean":

def agg_func(values):
return sum(values) / len(values)

elif aggfunc == "sum":

def agg_func(values):
return sum(values)

elif aggfunc == "count":

def agg_func(values):
return len(values)

else:
raise ValueError(f"Unsupported aggregation function: {aggfunc}")

# Vectorized extraction of columns for faster row iteration
index_arr = df[index].values
columns_arr = df[columns].values
values_arr = df[values].values

# Populate grouped_data directly using arrays, avoiding DataFrame row objects
grouped_data = {}
for i in range(len(df)):
row = df.iloc[i]
index_val = row[index]
column_val = row[columns]
value = row[values]
for index_val, column_val, value in zip(index_arr, columns_arr, values_arr):
if index_val not in grouped_data:
grouped_data[index_val] = {}
if column_val not in grouped_data[index_val]:
grouped_data[index_val][column_val] = []
grouped_data[index_val][column_val].append(value)

for index_val in grouped_data:
result[index_val] = {}
for column_val in grouped_data[index_val]:
Expand Down