Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 5 additions & 4 deletions comfy/lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -316,10 +316,11 @@ def model_lora_keys_unet(model, key_map={}):
if isinstance(model, comfy.model_base.Lumina2):
diffusers_keys = comfy.utils.z_image_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
for k in diffusers_keys:
to = diffusers_keys[k]
key_lora = k[:-len(".weight")]
key_map["diffusion_model.{}".format(key_lora)] = to
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to
if k.endswith(".weight"):
to = diffusers_keys[k]
key_lora = k[:-len(".weight")]
key_map["diffusion_model.{}".format(key_lora)] = to
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to

return key_map

Expand Down
53 changes: 37 additions & 16 deletions comfy/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -678,17 +678,14 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
def z_image_to_diffusers(mmdit_config, output_prefix=""):
n_layers = mmdit_config.get("n_layers", 0)
hidden_size = mmdit_config.get("dim", 0)

n_context_refiner = mmdit_config.get("n_refiner_layers", 2)
n_noise_refiner = mmdit_config.get("n_refiner_layers", 2)
key_map = {}

for index in range(n_layers):
prefix_from = "layers.{}".format(index)
prefix_to = "{}layers.{}".format(output_prefix, index)

def add_block_keys(prefix_from, prefix_to, has_adaln=True):
for end in ("weight", "bias"):
k = "{}.attention.".format(prefix_from)
qkv = "{}.attention.qkv.{}".format(prefix_to, end)

key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size))
key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size))
key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size))
Expand All @@ -698,28 +695,52 @@ def z_image_to_diffusers(mmdit_config, output_prefix=""):
"attention.norm_k.weight": "attention.k_norm.weight",
"attention.to_out.0.weight": "attention.out.weight",
"attention.to_out.0.bias": "attention.out.bias",
"attention_norm1.weight": "attention_norm1.weight",
"attention_norm2.weight": "attention_norm2.weight",
"feed_forward.w1.weight": "feed_forward.w1.weight",
"feed_forward.w2.weight": "feed_forward.w2.weight",
"feed_forward.w3.weight": "feed_forward.w3.weight",
"ffn_norm1.weight": "ffn_norm1.weight",
"ffn_norm2.weight": "ffn_norm2.weight",
}
if has_adaln:
block_map["adaLN_modulation.0.weight"] = "adaLN_modulation.0.weight"
block_map["adaLN_modulation.0.bias"] = "adaLN_modulation.0.bias"
for k, v in block_map.items():
key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, v)

for k in block_map:
key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, block_map[k])
for i in range(n_layers):
add_block_keys("layers.{}".format(i), "{}layers.{}".format(output_prefix, i))

MAP_BASIC = {
# Final layer
for i in range(n_context_refiner):
add_block_keys("context_refiner.{}".format(i), "{}context_refiner.{}".format(output_prefix, i))

for i in range(n_noise_refiner):
add_block_keys("noise_refiner.{}".format(i), "{}noise_refiner.{}".format(output_prefix, i))

MAP_BASIC = [
("final_layer.linear.weight", "all_final_layer.2-1.linear.weight"),
("final_layer.linear.bias", "all_final_layer.2-1.linear.bias"),
("final_layer.adaLN_modulation.1.weight", "all_final_layer.2-1.adaLN_modulation.1.weight"),
("final_layer.adaLN_modulation.1.bias", "all_final_layer.2-1.adaLN_modulation.1.bias"),
# X embedder
("x_embedder.weight", "all_x_embedder.2-1.weight"),
("x_embedder.bias", "all_x_embedder.2-1.bias"),
}

for k in MAP_BASIC:
key_map[k[1]] = "{}{}".format(output_prefix, k[0])
("x_pad_token", "x_pad_token"),
("cap_embedder.0.weight", "cap_embedder.0.weight"),
("cap_embedder.1.weight", "cap_embedder.1.weight"),
("cap_embedder.1.bias", "cap_embedder.1.bias"),
("cap_pad_token", "cap_pad_token"),
("t_embedder.mlp.0.weight", "t_embedder.mlp.0.weight"),
("t_embedder.mlp.0.bias", "t_embedder.mlp.0.bias"),
("t_embedder.mlp.2.weight", "t_embedder.mlp.2.weight"),
("t_embedder.mlp.2.bias", "t_embedder.mlp.2.bias"),
]

for c, diffusers in MAP_BASIC:
key_map[diffusers] = "{}{}".format(output_prefix, c)

return key_map


def repeat_to_batch_size(tensor, batch_size, dim=0):
if tensor.shape[dim] > batch_size:
return tensor.narrow(dim, 0, batch_size)
Expand Down
Loading