Skip to content

Compute worker installation with Podman

dtuantran edited this page Feb 6, 2023 · 22 revisions

Here is the specification for compute worker installation by using Podman.

Table of Contents

  1. Requirements for VM host
  • For GPU compute worker VM
  1. Compute worker installation
  • For CPU container
  • For GPU container

1. Requirements for VM host

We need to install Podman on the VM. We use Debian based OS, like Ubuntu. Ubuntu is recommended, because it has Nvidia driver support better.

sudo apt install podman

Then configure where Podman downloading the images by using the docker hub, by adding this line into /etc/containers/registries.conf :

unqualified-search-registries = ["docker.io"]

Create the .env file in order to add the compute worker into a queue (we use the default queue, if you use a particular queue then fill in your BROKER_URL generated when creating a new queue) :

BROKER_URL=pyamqp://<login>:<password>@codabench-test.lri.fr:5672 
HOST_DIRECTORY=/codabench
CONTAINER_ENGINE_EXECUTABLE=podman

Create user for running Podman container

useradd worker

For GPU compute worker VM

You need to install nvidia packages supporting Podman and nvidia driver:

distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
    && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \
    && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-container.list
sudo apt update
sudo apt install nvidia-container-runtime nvidia-containe-toolkit nvidia-driver-<version>

Edit the nvidia runtime config

sudo sed -i 's/^#no-cgroups = false/no-cgroups = true/;' /etc/nvidia-container-runtime/config.toml

Check if nvidia driver is working, by executing:

nvidia-smi

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 520.61.05    Driver Version: 520.61.05    CUDA Version: 11.8     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:01:00.0 Off |                  N/A |
| 27%   26C    P8    20W / 250W |      1MiB / 11264MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

The result should show gpu card information.

We need to configure the OCI hook script for nvidia. Create this file /usr/share/containers/oci/hooks.d/oci-nvidia-hook.json if not exists:

{
    "version": "1.0.0",
    "hook": {
        "path": "/usr/bin/nvidia-container-toolkit",
        "args": ["nvidia-container-toolkit", "prestart"],
        "env": [
            "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
        ]
    },
    "when": {
        "always": true,
        "commands": [".*"]
    },
    "stages": ["prestart"]
}

Validating if all are working by running a test container:

podman run --rm -it \
 --security-opt="label=disable" \
 --hooks-dir=/usr/share/containers/oci/hooks.d/ \
 nvidia/cuda:11.6.2-base-ubuntu20.04 nvidia-smi

The result should show as same as the command nvidia-smi above.

2. Compute worker installation

For CPU container

Run the compute worker container :

podman run -d \ 
    --env-file .env \ 
    --name compute_worker \
    --security-opt="label=disable" \
    --device /dev/fuse --user worker \
    --restart unless-stopped \ 
    --log-opt max-size=50m \ 
    --log-opt max-file=3 \ 
    codalab/codabench_worker_podman

For GPU container

Run the GPU compute worker container

podman run -d \
    --env-file .env \
    --privileged \
    --name gpu_compute_worker \
    --device /dev/fuse --user worker \
    --security-opt="label=disable" \
    --restart unless-stopped \ 
    --log-opt max-size=50m \ 
    --log-opt max-file=3 \ 
    codalab/codabench_worker_podman_gpu:0.2
Clone this wiki locally